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ABSTRACT 

Nearshore bars naturally protect the coast against erosion by dissipating wave energy. 

They are significant reservoirs of sand, and thus, they may impact the response of beaches to 

different wave conditions. Nearshore bar position and morphologic variability also 

influences long- and short-term beach and dune stability. This study reveals how nearshore 

bars influence beach-dune dynamics using very high-resolution (VHR) imagery. A new low-

cost identification approach for bar identification was applied by integrating VHR imagery. 

Future nearshore bar research will benefit from integrating the larger spatial scale provided 

by satellite sensors. A rule-based OBIA approach was successful in identifying and 

characterizing nearshore bars. This study also looked at the interactions of nearshore 

dynamics and the beach-dune system by investigating the coastal system holistically instead 

of each feature (dunes, beach, and bars) as separate entities. Knowing how the dunes, the 

beach and the bars dynamics are related and how each component affects the response of the 

other during high-energy wave event conditions will also significantly improve the way that 

we manage, protect, and develop our coastlines. Results showed that the morphology of the 

nearshore bars have a direct impact on how the dune-beach system respond to high-energy 

events. 
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CHAPTER 1 

INTRODUCTION 

This dissertation aims to study how nearshore bars influence beach-dune dynamics by using 

multispectral imagery. The research focuses on nearshore bars because understanding the 

system’s interaction with the beach-dune system is important to develop conservation and 

management plans based on their unique dynamics and patterns. Although nearshore bars 

have been studied previously, questions remain regarding their influence over the beach-

dune system. Due to their location they are more challenging to study and therefore will 

benefit from improved techniques to investigate them. This remote sensing-based method for 

nearshore bar identification will increase the spatial and temporal capability to study 

nearshore bar systems at a decreased cost compared to in situ projects. This research also 

explores how nearshore bars respond to high-energy wave events, such as tropical cyclones 

and winter storms, and their efficacy in protecting the dunes and the beach. The dissertation 

specifically looks at how distinct bar morphologies protect the subaerial beach differently.  

The ultimate goal is to streamline the process of assessing and monitoring coastal 

landscapes.  

Chapters 2, 3 and 4 will be published as three separate manuscripts. Chapter 2 

includes a review of all the methods previously used to monitor and study coastal systems. 

Chapter 3 introduces and discusses a rule-based OBIA approach to identify nearshore bars 

and verifies the data obtained using Argus imagery. Lastly, Chapter 4 looks into the 
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responses of nearshore bars to high-energy wave events and their efficacy in protecting the 

dune and beach. 

1     Hypotheses and objectives 

This dissertation research is guided by two hypotheses (Table 1.1). The first hypothesis and 

the associated objectives relates to applying and testing a bar identification approach based 

on VHR multispectral imagery. VHR multispectral images have high spatial resolution, and 

therefore an accurate identification of nearshore bars is possible. This method incorporates 

an existing and widely accepted bar classification scheme (Lippmann and Holman, 1990). 

The second hypothesis and associated objectives employ the rule-based OBIA approach 

from the previous hypothesis. This portion of the study focuses around high-energy wave 

events to holistically understand the interactions between nearshore dynamics and the beach-

dune system.  

Table 1.1 Summary of research hypotheses and objectives 

Hypotheses Objectives 

 

 

A rule-based OBIA approach 

can be applied to multispectral 

imagery to identify nearshore 

bars. 

  

• Acquire nearshore bar characteristics for three 

locations.  

• Compare the accuracy of multispectral images of 

the rule-based OBIA nearshore bar identification. 

approach using the Argus video monitoring 

system. 

• Calculate percentage of error for bar 

identification. 

 

 

Bar morphology influences 

beach-dune characteristics 

and this relationship varies 

geographically.  

   

• Measure bar morphology and beach-dune 

characteristics using multispectral imagery. 

• Establish if coastal system components vary 

geographically. 

• Quantify bar morphology and characteristics, and 

coastal system responses during high-energy wave 

event conditions. 

 



www.manaraa.com

3 

 

2    Research Broader Impacts  

The field of coastal geomorphology studies the dynamics and processes that occur in coastal 

regions. Understanding the spatiotemporal scale at which nearshore bar systems evolve and 

how those patterns are related to beach-dune response are important to create effective 

coastal management plans. Knowing how the dunes, the beach, and the bars dynamics are 

related and how each component affects the response of the other during high-energy wave 

event conditions will significantly improve the way that we manage, protect, and develop our 

coastlines. This novel approach for nearshore bar identification will increase the spatial and 

temporal capability to study nearshore bar systems at a decreased cost compared to in situ 

projects. Understanding the relationship between the dune, beach, and nearshore bars and 

how the system responds to high-energy events can provide managers with means to identify 

areas of erosion and better protect those areas and surrounding infrastructures. Integrating 

traditional remote sensing technology (multispectral imagery) with newer and innovative 

techniques for coastal management and studies will increase accessibility to researchers and 

coastal management. 
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CHAPTER 2 

 

A SYNTHETIC REVIEW OF REMOTE SENSING APPLICATIONS TO DETECT 

NEARSHORE BARS1 

 

 

 

 

 

 

 

 

 

 

1Román-Rivera, M.A. & Ellis, J.T. 2019. Marine Geology. 408: 144-153. Reprinted here 

with permission of publisher. 
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1      Introduction 

The nearshore is defined as a transition zone between the land and the continental shelf and 

is significantly influenced by waves during normal and extreme conditions (i.e., tropical 

cyclones and winter storms). It represents an important and highly dynamic region of the 

coastal system. The nearshore is vital to the economy, security, commerce, and recreation of 

all coastal nations (Barbier et al., 2008; Borja, 2005; Dugan et al., 2011; Elko and Holman, 

2014; Holman et al., 2003). This region is constantly evolving, is often densely populated, 

and is threatened by long-term erosion caused by sea level rise, the impact of storms, and 

anthropogenic influences (Elko and Holman, 2014).  

Nearshore processes, such as sediment and water movement generated by waves and 

currents, play an important role in determining the morphodynamic state of the beach. These 

processes shape the overall geometry of the foreshore, beach slope, grain distribution, and 

beach width (Houser and Ellis, 2013; Rutten et al., 2018; Sherman and Bauer, 1993). 

Nearshore characteristics (i.e., presence or absence of bars, bar count, and slope) regulate 

sediment delivery to the subaerial beach (Bauer, 1991; Pye, 1982; Sherman and Bauer, 

1993). In turn, the morphodynamic beach state has important implications for beach-dune 

sediment exchange (Houser, 2009; Sherman and Bauer, 1993). Sediment characteristics of 

the nearshore, such as grain size, volume, and distribution are crucial to aeolian processes 

and resulting landforms on the subaerial beach (Houser and Greenwood, 2007; Houser and 

Ellis, 2013; Rutten et al., 2018; Sherman and Bauer, 1993). Bar morphodynamics can 

provide a better understanding of the subaerial beach-dune systems dynamics.  

In this article, we summarize the use of remote sensing imagery to study bar 

morphodynamics (Figure 2.1). Others have compiled comprehensive reviews of bar 
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dynamics (c.f. Cohn et al., 2014; Davidson-Arnott, 2013; Falqués et al., 2008). The 

following sections outline the parameters required to effectively employ still and video 

photography (Argus and surfcams) and satellite imagery for bar identification. Lastly, we 

discuss the benefits and limitations associated with each monitoring method and suggest 

future research directions.  

2       Nearshore bar research 

Our efforts to understand bar morphodynamics can be traced back to the early 1900s (Evans, 

1940; King and Williams, 1948). It was not until the mid-1970s  that sensors, aerial 

photography, and other computer-based technologies were employed to study this region 

with higher precision (Carter and Balsillie, 1983; Carter and Kitcher, 1979; Greenwood and 

Davidson-Arnott, 1979; Short and Hesp, 1982). Since then, we have been able to provide a 

more thorough understanding of these dynamic morphologies. Advances in technology, in 

combination with instrument intensive field experiments (i.e., Aagaard et al., 1998; Holman 

and Sallenger, 1993; Huntley and Bowen, 1973; Sherman and Greenwood, 1984), led to the 

development of theoretical and numerical models (e.g., Aagaard and Masselink, 1999; 

Greenwood and Davidson-Arnott, 1979; Wijinberg and Kroon, 2002) of water motion and 

sediment transport that substantially contributed to the understanding of the mechanisms that 

may lead to bar formation.  

Advances in in situ methods have made the task of repeatedly measuring bars easier, 

but these methods are still time-consuming, expensive, and spatially limited (Holman and 

Haller, 2013; Holman and Stanley, 2007). In addition, field based experiments are often 

temporally limited because of harsh conditions in the surf zone. 
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Figure 2.1 Examples of near-Earth and satellite image products. A, B, and C are Argus 

products from Cassino Beach, Brazil  A) Snapshot from their camera 2 that shows waves 

breaking over the bars; B) Timex image; C) 10-minute variance image; D) Snapshot of a 

surfcam located at Coffs Harbour, Australia; E) 1990 aerial image of the nearshore bars near 

Province Lands, Cape Cod, MA; F) Landsat-8 natural color image showing the bar system in 

Bay St. Louis, MS (obtained on 11/26/2014). 

 

Breaking waves and wave-driven currents in the surf zone are potentially dangerous 

for divers and frequently result in instrument failure (Holman and Haller, 2013; Lippmann 

and Holman, 1989). Sandy bottoms may undergo substantial erosion or accretion over a 

short period of time, which could rapidly scour or bury bottom-mounted sensors and 



www.manaraa.com

8 

 

adversely affect data collection. Lastly, water-level changes related to tidal fluctuations at the 

study site can also affect instrumentation by changing the fixed sensor’s domain range 

(Holman and Haller, 2013). All these limitations can be overcome by employing remote 

sensing technologies.  

Remote sensing techniques permit the collection of repetitive bar surveys at longer-

time scales (months to years), compared to in situ experiments. These techniques provide a 

cost-effective option that allow for the systematic and worldwide study of bar systems under 

environmentally harsh conditions. They also have provided a wealth of data on bar 

formation, evolution, and characteristics (c.f., Aarninkhof et al., 2000; Aleman et al., 2017; 

Alexander and Holman, 2004; Konicki and Holman, 2000; Lippmann and Holman, 1989, 

1990; Plant et al., 1997; Ribas et al., 2010; Ruessink et al., 2002; Sonu, 1972). Coastal 

geomorphologists have ascertained substantial conclusions from qualitative and quantitative 

remotely-based observations suggesting the processes controlling the formation and 

evolution of bars (Alexander and Holman, 2004; Houser and Greenwood, 2007; Konicki and 

Holman, 2000; Lippmann and Holman, 1990; Ruessink et al., 2002). Imagery obtained from 

remote sensing instruments is particularly appealing because remote instrumentation 

alleviates many of the challenges related to in situ instrumentation (Holland et al., 1997).  

 

3       Remote sensing methods to study bar morphodynamics  

Multiple types of remote sensing technologies have been used to study bar morphodynamics 

and the surrounding hydrodynamics (Holman and Haller, 2013; Holman and Stanley, 2007; 

Ribas et al., 2017). Active and passive remotely sensed instruments, such as cameras, radars, 
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and light detecting and ranging systems (Lidar), have been employed to conduct these 

investigations. Sensors can be mounted on different platforms depending on the application; 

they can be fixed, flying, floating or, in the case of satellite imagery, orbiting the Earth. Bar 

monitoring programs must have ample temporal frequency and duration to differentiate 

between the short- (days to weeks) and long-term (months to years) evolution of bar systems 

to capture changes in the system that occur in response to a high energy event versus gradual 

changes in the system (Aleman et al., 2017; Lippmann and Holman, 1990). Bar morphology 

studies employing remote sensing should satisfy the following criteria: a) the shape of the 

bar must be easily identifiable; b) the position of the crest must be measured accurately over 

a range of longshore distances; and c) the sampling must be possible across a range of 

hydrodynamic conditions (Lippmann and Holman, 1990). The remote sensing techniques 

discussed in the following sections, aerial photography, video monitoring systems, and 

satellite imagery, all conform to the criteria described above. 

3.1 Aerial photography 

Near-Earth imagery  can be obtained with minimal interference to the environment and 

generally requires less logistical efforts compared to field experiments (van Dongeren et al., 

2008).  These monitoring techniques operate under the principle of optimizing the optical 

signatures of nearshore surfaces. For example, the location of concentrated wave breaking 

may indicate the position of submerged bars (Holman et al., 2003; Holman and Stanley, 

2007). Near-Earth imagery comprises still camera imagery and videography, discussed 

below.  

Aerial photography (Figure 2.1E) has been used to track bar morphodynamics since 

the early 1900s. This technique replaced the plane table survey method for shoreline 
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mapping, since aerial photography can cover extensive areas with greater detail while 

maintaining the horizontal control of the plane table survey method (Liu et al., 2007). Since 

the early 1920s, the National Oceanic Service (NOS), office within the United States 

National Oceanic and Atmospheric Administration (NOAA) has been tasked with 

investigating the feasibility of using aerial photography to compile coastal topography 

(Graham et al., 2003; Liu et al., 2007). Early work proved that aerial photographs were 

useful for obtaining topographical information (Harris and Umbach, 1972; Lundahl, 1948; 

Wiegel, 1947). Aerial photography proved to be a more accurate and time-effective method 

to collect shoreline data. Researchers and agencies were able to bring shoreline compilations 

from the field to the office (Graham et al., 2003; Liu et al., 2007). Some U.S. coastal regions 

have an extensive record of aerial photography, which can serve to study long-term 

variability of nearshore bars (Moore, 2000; Sheppard et al., 1995). In some regions, black 

and white aerial photographs date back to the 1920s, but research-quality stereo photographs 

(two or more offset photographs that allow the estimation of 3-D coordinates of points by 

creating or enhancing the perception of depth in an image) were not available until the early 

1940s (Harris and Umbach, 1972; Moore, 2000). High resolution (1.0 – 5.0m) aerial 

photography and images are currently available at a low cost through federal and state 

government agencies, at map libraries, and for a fee from commercial entities. 

Still camera systems are used because of their high speed and spatial resolution. 

Images typically results in higher quality compared to standard video systems (Coco et al., 

2005). For example, a still camera system installed at Lowestoft, UK, has the capability to 

stream 6-7 frames per second and capture and save images to a disk at a rate of two frames 

per second (Coco et al., 2005). These high-resolution images improve the ability to discern 
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bar features. Still cameras can be programmed to acquire oblique snapshots during daylight 

hours at pre-determined time intervals. The bar locations are interpreted from the 

discontinuous foam associated with breaking waves in the individual snapshots (Konicki and 

Holman, 2000; Plant and Holman, 1997). Merging or stacking multiple images provides 

average natural modulations of the nearshore wave field, which has been shown to be an 

accurate proxy for the underlying, submerged bar topography (Aarninkhof et al., 2000; 

Lippmann and Holman, 1990; Plant and Holman, 1997). These merged images can also 

provide bar count, width and length, as well as shoreline orientation and width (Aarninkhof 

et al., 2000; Konicki and Holman, 2000; Lippmann and Holman, 1989).  

One product of the Argus cameras, which is discussed in detail in the next section, is 

the single (still) snapshot (Figure 2.1A). The Argus snapshots are remotely triggered, usually 

at 2 Hz, to capture images at the top of every daylight hour. The network of Argus beach 

cameras are temporally synchronous and therefore able to detect waves (Armaroli and 

Ciavola, 2011; Holman and Stanley, 2007). The temporal resolution of the Argus system 

reduces errors associated with non-stationarity since the sampling rate is faster than the 

observed rate of bar movement (Lippmann and Holman, 1989). Snapshots provide effective 

and routine qualitative synoptic assessments of bar morphodynamics.  

To use near-Earth imagery for qualitative analysis, the products must be referenced in 

space and corrected for lens distortion. This process, called geo-rectification, requires 

identification of ground control points (GCP) in the image and in the real world (Archetti 

and Zanuttigh, 2010; Holland et al., 1997). A minimum of eight to ten GCPs distributed 

throughout the study are needed to reduce image distortion (Holland et al., 1997; Moore, 

2000; Thieler and Danforth, 1994). Increasing the number of GCPs will improve the 
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algorithms and reduce the geographic distortion of the image (Archetti and Zanuttigh, 2010; 

Holland et al., 1997; Moore et al., 2003). Identifying GCPs is often a challenge when 

studying bars because a substantial portion the image observes water. Fortunately, 

laboratory, based image corrections have been formulated and effectively implemented to 

provide setup and calibration of the camera system, including accounting for lens distortion 

and sampling imprecisions resulting from the digitization processes (Beyer, 1992; Holland et 

al., 1997; Penna, 1991; Plant et al., 2002).  

The process of geo-rectification can be a source of uncertainty in the final dataset. 

Accounting for geo-rectification uncertainty has important implications when reporting the 

location of bars and their movement over time (Rodríguez-Martín and Rodríguez-Santalla, 

2013). The rectified image error is estimated by comparing the distances between the ‘real-

world’ GCPs and the image-derived GCPs (Archetti and Zanuttigh, 2010; Holland et al., 

1997). The reported acceptable error ranges between 2.0 to 6.0 m (Moore, 2000; Roman-

Rivera, 2014; Thieler and Danforth, 1994). After geo-rectification, additional processing of 

still camera imagery is often required  to enhance the contrast between the bars and the 

surrounding deeper water (Moore et al., 2003).  

Geometric corrections need to be frequently repeated when still cameras are used to 

compensate for the changes of the camera’s field of view (FOV) (Archetti and Zanuttigh, 

2010). Changes in the FOV can be caused by wind and temperature fluctuations, which 

cause minor movements to the system and, therefore, the focus of the lens (Archetti and 

Zanuttigh, 2010).  Many cameras used to study bars are placed at a fixed location for long 

durations, which is advantageous because there is set viewing geometry (Holman and Haller, 

2013; Holman and Stanley, 2007). In some instances, the fixed camera location may lack the 
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high vantage point and viewing angles needed for sampling at a particular spectral band and 

detecting different variables (i.e., breaking waves) (Holman and Haller, 2013; Lippmann and 

Holman, 1990). A potential limitation of these systems is that snapshots may omit time 

domain information, which could be  needed for more sophisticated quantitative analysis 

(Holman et al., 2003). Another possible limitation is that not all still camera systems allow 

remote download of data. Many require connectivity to a computer via USB or Wi-Fi (Coco 

et al., 2005).  

The digitization process, or the process of feature identification in the image, might 

also be a source of uncertainty, specifically the occurrence of sunglint and image 

contamination.  Image contamination comes in multiple forms, which could prohibit bar 

identification or lead to erroneous bar characterizations. Optically complex waters (case 2) 

from phytoplankton, suspended sediment, and/or dissolved organic matter contaminate the 

image and prohibit bar identification. In clear water, color differences are used to identify 

shallower areas (i.e., the bars). However, changing sun angles and tidal stages create  

uncertainty surrounding the identification of the shade of sand that identifies the bar 

(Alexander and Holman, 2004; Plant and Holman, 1997). It is difficult to correct for 

sunglint, as its reflection saturates the sensor and obstructs the collection of any other 

spectral information. Fortunately, the effects of sunglint and image contamination can be 

reduced using image spectral enhancement, and filtering and texture techniques to ultimately 

improve bar identification (c.f., Shoshany and Degani, 1992). 

While there is a definite spatial advantage to using still cameras, large uncertainties 

manifest when extrapolating findings from temporally limited observations (Lippmann and 

Holman, 1989; Moore, 2000; Thieler and Danforth, 1994). For example, Lippmann and 
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Holman (1989) explain that infrequent observations provide incomplete knowledge 

demonstrating the connection between instantaneous visual wave breaking patterns and the 

underlying local bathymetry. Aerial photography is collected at different time intervals 

depending on the location (could be consistently collected 1-2 times per year or only after a 

major event), making it challenging to conduct short-term research utilizing this technique. 

This forces the user of aerial photography to employ some level of subjectivity that leads to 

possible inconsistencies in the bar detection process (Shoshany and Degani, 1992).  

3.2 Video monitoring 

 Coastal video systems were originally developed to improve scientific understanding of 

nearshore systems and their response to tidal and wave forcing (Davidson et al., 2007; 

Holman et al., 2003). Fixed video cameras mounted high above the beach affords a wide 

field of view that is ideal for monitoring bars, as well as the shoreline and rip currents 

(Davidson et al., 2007; Holman and Stanley, 2007). Video monitoring systems to study bar 

morphodynamics have been recognized by the scientific community, specifically through the 

use of Argus (c.f., Aarninkhof et al., 2003; Alexander and Holman, 2004; Guedes et al., 

2011; Holman et al., 2015; Lippmann and Holman, 1989; Madsen and Plant, 2002; Plant and 

Holman, 1997; Wijnberg and Terwindt, 1995) and surfcams (c.f., Bracs et al., 2016; 

Brignone et al., 2012; Mole et al., 2013; Turner et al., 2006).  

3.2.1 Argus system 

The most frequently used video monitoring system to study bar morphodynamics is the 

Argus station developed by the Coastal Imaging Lab (CIL) at Oregon State University. Its 

purpose is “to provide a low-cost accessible system for sampling of the important 
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hydrodynamic forcing and bathymetric response variables in this range of nearshore 

environments” (Holman and Stanley, 2007, pp.485). Since its inception, the Argus coastal 

imaging system has expanded to an international effort, collecting imagery for almost three 

decades, and meeting a range of research and management needs (Bracs et al., 2016). Other 

video systems have since been developed and installed to monitor coastal systems,  based on 

Argus utilities and software, such as Cam-Era (National Institute of Water and Atmospheric 

Research New Zealand) (c.f. Coco et al., 2005; van de Lageweg et al., 2013), Kosta System 

(Université de Pau et des Pays de l’Andor France) (c.f. Rihouey et al., 2009), CoastalCOMS 

(Coastal Conditions Observation and Monitoring Solutions, Australia) (c.f. Bracs et al., 

2016; Murray et al., 2013; Splinter et al., 2011), and Horus (University of Cantabria Spain 

and National University of Colombia) (c.f. Garnier et al., 2012) (Nieto et al., 2010). Because 

of its overwhelming popularity in the literature, this review will focus on Argus. 

An Argus station enables controlled acquisition and returns optical remote sensing 

data to land-based computers (Holman et al., 2003; Holman and Stanley, 2007). Argus 

stations comprise four to five video tower mounted cameras attached to a host computer that 

serves as the system control and a communication link between the cameras and the data 

archives. The cameras have a 1024x768 pixel resolution, a field of view spanning 180°, and 

an aim angle that is within 0.1 pixel or 0.004°. These parameters allow for a spatial coverage 

of 3-6 km of the nearshore (Aarninkhof et al., 2000; van Enckevort et al., 2004). Presently, 

there are approximately 50 operational sites in Australia, Brazil, England, Italy, Japan, the 

Netherlands, New Zealand, Spain and the United States. Argus cameras typically provide 30 

images per second with each image containing approximately 768 kB of data (Holman and 

Stanley, 2007). Each camera typically collects 18 GB of data per day containing 12 runs 
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starting at the top of the hour and lasting 17 minutes. The Argus system has three sampling 

methods collected during 12 (assumed) daylight hours: a) single snapshots (see section 3.1); 

b) 10-minute time-exposures (or timex); and c) 10-minute variance images. Argus data has 

also been used to compare statistics of shoreline and bar variability (Alexander and Holman, 

2004; van Enckevort et al., 2004).  

One timex image (Figure 2.1B) is obtained per hour and each image represents the 

mathematical temporal-mean of all frames collected during the first 10 minutes of the hour 

using a 2Hz sampling rate (Holman and Stanley, 2007). The main use of timex images is to 

delineate areas of waves breaking in the surf zone obtained by averaging fluctuations due to 

incident wave modulations (Lippmann and Holman, 1989; Ribas et al., 2010; van Enckevort 

et al., 2004). Subsequently, these images can be used to approximate the location of bars, 

since the areas of concentrated breaking waves appear as white bands in the image. 

Calibration studies have demonstrated that the bar locations can be derived accurately from 

timex images (Holman and Stanley, 2007; Lippmann and Holman, 1989) by using site-

specific parameters (wave height, tidal level, and slope) to define the relationship between 

wave breaking and bar crest position (Ribas et al., 2010). High-energy conditions may 

erroneously suggest substantial landward bar migration because of the presence of foam on 

the shoreward edge of the bar system (Lippmann and Holman, 1989). Image differencing or 

subtracting successive video frames and averaging the difference images can be used to 

remove persistent foam that is not associated with actively breaking waves, thus eliminating 

potential error (Guedes et al., 2011; Lippmann and Holman, 1990). The time interval 

between successive frames is 0.5 second, while the threshold noise level should be 

approximately 6% of the maximum range of intensity (Lippmann and Holman, 1990). 
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The third Argus product is the 10-minute variance image (Figure 2.1C). These are 

also generated from amalgamating the 2Hz single frame images collected during the first 10 

minutes of each daylight hour. The 10-minute variance images result in brighter areas where 

there is a strong natural variation and therefore are often used to delineate the surf zone  

(Guedes et al., 2011; Holman et al., 2003; Holman and Stanley, 2007). Combining Argus 

timex and variance images provide optimal estimates of bar location, especially when 

hydrodynamic data are not available (Guedes et al., 2011).  Analyzing the maximum wave 

energy dissipation and the maximum averaged pixel intensity may lead to stronger 

associations between the breaking wave patterns and the location of bars when the waves are 

small (Guedes et al., 2011; Lippmann and Holman, 1989). This method can therefore be used 

to study the morphology and dynamics of bar systems located in coastal areas characterized 

by lower wave heights and micro-tidal environments (Guedes et al., 2011; Ribas et al., 

2010).   

Since its inception, the Argus system has been extensively used to measure nearshore 

bathymetry and morphology. Lippmann and Holman (1989) were the first to model the 

relationship between the white bands in time-exposure images and the positions of 

underlying bar crests. Their model allowed for the visualization and quantification of 

nearshore morphology based on the patterns of incident wave breaking. Lippmann and 

Holman’s model (1989) assumed that more waves break over the shallow water above the 

bar compared to the surrounding areas, creating a sharp contrast between breaking and non-

breaking regions that may be photographed. Over the years, the Lippmann and Holman 

model has been improved by correcting discrepancies associated with changing tide 

elevations and wave heights (Kingston et al., 2000; van Enckevort and Ruessink, 2003).  
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Argus-specific analysis tools are available to aid with image processing, such as the 

Argus Merge Tool (AMT) and the Argus Stack Tool (AST). AMT allows users to merge or 

stack images from multiple cameras into panoramic or plan view images to allow for 

quantitative measurements. The tool also enables users to rectify images from a single 

camera. AST was specifically designed for the analysis of bar morphodynamics. AST 

measures image intensities along user-specific parameters, allowing users to analyze the 

evolution of the wave breaking patterns over time and quantify bar migration. 

Video monitoring systems are often mired by limited storage and management 

capabilities (Holman and Stanley, 2007).  Argus sampling methods have been modified to 

reduce the quantity of returned data. Those modifications include the production of single-

image products that represent the bulk of statistics collected over an entire sampling period 

(Holman and Stanley, 2007). Most nearshore applications do not require the full sampling 

capabilities of video cameras and therefore data collection can be downscaled to 

approximately 2 Hz sampling with a 5m resolution (Holman and Haller, 2013) Downscaling 

reduces the data rate and enables the user to extend the study duration and expand the spatial 

coverage (Holman and Haller, 2013). This reduced sampling design is the most employed 

(and accepted) method among coastal researchers studying nearshore bar systems (Holman 

and Haller, 2013; Ribas et al., 2010). 

3.2.2 Surfcams 

Argus stations and other in situ coastal imaging systems are site limited because of high 

operational expenses and installation restrictions requiring a high elevation beach-front or 

purpose-built tower (Bracs et al., 2016; Brignone et al., 2012). Recreational surf cameras, or 

surfcams, are a lower cost alternative source of digital images that can be used to study and 
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monitor nearshore bar systems. Surfcams broadcast near-continuous video streams of beach 

conditions extending up to several kilometers along the coastline over the internet. While 

surfcams are relatively new to the study bar morphodynamics, for years, they have proved 

useful for the integration of research and coastal zone management practices (Davidson et 

al., 2007; Kroon et al., 2007; Mole et al., 2013; Turner et al., 2006). The data obtained from 

these systems are used to identify and quantify a diverse range of coastal processes (Kroon et 

al., 2007; Mole et al., 2013; Turner et al., 2006).  

The surfcam stations typically consist of a single robotic pan-tilt-zoom camera 

mounted on a fixed position that is rotated between pre-programmed aim points (Bracs et al., 

2016). Through robotic movements, a single surfcam achieves a similar 180-degree spatial 

coverage to the Argus system or other fixed camera systems. Surfcams can be inexpensive 

and less intrusive (compared to Argus) in the coastal setting, since new infrastructure is not 

required (Bracs et al., 2016; Mole et al., 2013; Turner et al., 2006). Surfcam hardware 

specifications vary depending on the camera model. For example, CoastalCOMS operates a 

surfcam network that includes 80 cameras around Australia. The cameras have pan range of 

340°, tilt of 115°, and a 26X optical zoom with a specified reposition accuracy of ±0.064° 

(Bracs et al., 2016; Mole et al., 2013). Surfcams are typically mounted to a low beachfront 

building and pointed toward the oncoming waves with elevations ranging from 9 to 20m 

above mean sea level (Bracs et al., 2016; Mole et al., 2013). Low-angle surfcams can present 

a challenge for shoreline measurement, as the shoreline can be obscured by features in the 

foreground (Bracs et al., 2016; Brignone et al., 2012; Schiaffino et al., 2013). This means 

that not all surfcams currently in use are useful for bar identification.  
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Surfcam videos also can be time averaged to produce timex-like products capturing 

nearshore images that reveal bar locations. Bracs et al. (2016) conducted an 18-month 

comparative study between a surfcam and Argus in Australia. The results demonstrated that 

the mean horizontal errors were approximately 1 m and the standard deviation of error was 

<2 m by utilizing elevation and rectification methodologies with both systems (Bracs et al., 

2016). When comparing the results obtained from the surfcam imagery with monthly real-

time kinematic global navigation satellite system surveys from the same locations, the 

surfcam images horizontal errors were less than 1m (Bracs et al., 2016).  

Development of low-cost, easily accessible monitoring systems can address the 

spatial data scarcity of short- to long-term bar morphodynamics. Surfcams represent a 

promising source for regional and national coastal and nearshore monitoring programs, but 

there are limited academic examples that use this technology for nearshore bar identification 

(Bracs et al., 2016; Mole et al., 2013; Turner et al., 2006). A major limitation of surfcams is 

that most of these systems do not store data over long periods of time. These video cameras 

re-write over their data approximately every 2 weeks. Increased partnerships between 

academia, local governments, and coastal residents and businesses would allow the 

expansion the surfcam network for nearshore bar monitoring and could help overcome the 

limitations associated to this system. 

3.2.3 Bar identification from video monitoring systems 

Identifying bars from images obtained using video monitoring systems has added 

tremendous value toward understanding bar dynamics. The use of video monitoring systems 

for nearshore research has led to the development of innovative algorithms and methods that 

have been employed  for the quantitative extraction of geophysical signals from image data 
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providing new insights of nearshore bar morphodynamics (Alexander and Holman, 2004; 

Davidson et al., 2007; Gallagher et al., 1998; Holman and Haller, 2013; Alexander and 

Holman, 2004; Lippmann and Holman, 1989; Plant and Holman, 1998; Ruessink et al., 

2002; Thorton et al., 1996). Once the images are normalized and the bars are confidently 

identified, the bar and surrounding characteristics should be quantified.  

The aforementioned algorithms and methods were all created to be employed in 

Argus environments, but recent studies have demonstrated that they can also be applied to 

surfcam derived imagery (Bracs et al., 2016; Brignone et al., 2012; Schiaffino et al., 2013). 

Several tools have been developed for this task (c.f. Alexander and Holman, 2004; Armaroli 

et al., 2006; Armaroli and Ciavola, 2011; Brignone et al., 2012; Kingston et al., 2000; 

Madsen and Plant, 2001; van Dongeren et al., 2008). Each tool offers different outputs that 

benefit our understanding of bar and nearshore morphodynamics, described below (Table 

2.1). 

 Table 2.1 Accuracy assessments from previous studies inferring nearshore bar 

location. 

Reference Location Instrument Method Accuracy Error 

Video Monitoring 

 

Aarninkhof 

et al. 

(2000) 

 

Egmond, NLD Argus Mapping mult. 

waterlines per 

tidal cycle 

RMS=0.25m 

(detection model) 

RMS=0.10m 

(elevation model) 

 

σ=0.25

m 

Alexander 

& Holman 

(2004) 

 

Noordwijk, NLD 

Duck, NC, USA 

Palm Beach, 

USA 

Argus None listed 2.5m 2-21% 
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Armaroli et 

al. (2006) 

 

Lido di Dante, 

Ravenna, ITA 

Argus L-BAIT r2=0.4132, 95% 

significance 

+/- 8-

10m 

Bracs et al. 

(2016) 

 

9 sites in AUS  CoastalCOMS None listed 4-20m 4-14m 

(stdv. 

error) 

Brignone et 

al. (2012)  

 

Mar del Plata, 

ARG 

Pietra Ligure,  

ITA 

 

Argus Beachkeeper plus 0.16-2.25m 

 

0.55-2.90m  

 

2.1m, 

σ=1.15 

 

2.75m, 

σ=1.0 

Kingston et 

al. (2000) 

 

Egmond, NLD Argus Artificial Neural 

Network 

r2 =0.87 

r2 =0.77 

5m 

(outer 

bar)  

10m 

(inner 

bar) 

Lippmann 

& Holman 

(1990) 

 

Duck, NC, USA Argus Morphologic 

classification 

criteria and EOF 

 

15m 5-10% 

Madsen & 

Plant 

(2001) 

 

Duck, NC, USA Argus Modified SLIM 0.1m Explain

ed 30-

40% 

variance 

Plant & 

Holman 

(1998) 

 

Duck, NC, USA 

 

Argus SLIM 0.5m 

 

10% 

Ribas et al. 

(2010) 

 

La Baceloneta 

& Bogatell 

Barcelona, ESP 

 

Argus 

 

Induced barline 

variability 

0.75<Hrms<1.5m 

0.5<Hrms<1.25m 

+/- 14m 

+/- 11m 

van 

Dongeren 

et al. 

(2008) 

Duck, NC, USA 

Egmond, NLD 

Argus Beach Wizard 0.3m 

0.5m 

+/- 1 σ 
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Satellite Imagery 

 

Dehouck et 

al. (2009) 

 

Truc Vert Beach, 

FRA 

SPOT-4 & 5; 

FORMOSAT-2 

 

None listed 0.5m 15% 

Lafon et al. 

(2004) 

 

Arcachon Bay, 

FRA 

SPOT None listed RMS = 30m 20% 

Rodz-

Matín & 

Rodz-

Santaella 

(2013) 

 

Ebro Delta, 

ESP 

ASTER None listed RMS = 

0.47-0.59 

3-8m (derv 

from geo 

correction) 

 

 

Kingston et al. (2000) used an Artificial Neural Network (ANN) to model the cross-

shore movement of the Argus timex intensity maximum. Generally, ANNs are a framework 

for representing non-linear mappings between multi-dimensional spaces governed by several 

adjustable parameters, specifically in this case, wave climate and water level (Kingston et al., 

2000).This technique is applied to reduce the deviations in bar location produced by 

modulations of the breakpoint by the tide and variations in the incident wave energy 

(Kingston et al., 2000; López et al., 2017; Ribas et al., 2010). The ANN produces a model 

for the outer and inner bar systems that allows for the estimation of the cross-shore bar 

location from the raw Argus image intensity interpolation.  However, video-image inferred 

bar location derived from other methodologies may result in errors up to 30-40m (Kingston 

et al., 2000; Masselink et al., 2014). The residual errors for the ANN models at a study site in 

Egmond aan Zee, the Netherlands were <5m for the outer bar and <10m for the inner bar. 

The R2 correlation values between ANN estimates and the actual location of the bars were 

0.87 (outer) and 0.77 (inner) (Kingston et al., 2000). Several studies have employed ANN 
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models to gap-fill data sets for periods with no direct measurements and to successfully 

estimate bar location (Boak and Turner, 2005; Kingston et al., 2000; Plant et al., 2007; 

Ruessink et al., 2002). It is suggested that ANN is the best current available method for bar 

extraction (Plant et al., 2007; Ribas et al., 2010).  

Alexander and Holman (2004) also developed a process to identify bars from an 

Argus timex image. After minimizing the noise in the data, they convolved a series of 

Gaussian functions of varying standard deviations with cross-shore intensity profiles at each 

longshore location (c.f., Alexander and Holman, 2004). The set of convolutions was summed 

over a range of standard deviations to estimate energy at each cross-shore location. Bars 

were identified as peaks within the estimated energy (c.f., Alexander and Holman, 2004). 

This method requires quality control since non-relevant features, such as piers, create false 

peaks that could be incorrectly identified as bars (Alexander and Holman, 2004). To find bar 

locations, Alexander and Holman (2004) also developed a method to normalize bar position 

based on the tidal level, which reduces tidal bias within the data set. Their method provides 

an objective differentiation between gaps in the bars (i.e., rip current channels) and errors 

that arise in the dataset due to lack of wave breaking over offshore features. 

The longshore Bar Amplitude Identifier (L-BAIT) was developed to calculate bar 

crest wave amplitude and length. This tool was formulated by Armaroli et al. (2006) 

specifically for their study site in Lido di Dante, Italy where there is a tidal range between 0-

2 m and Hrms ≤ 1.5m (Armaroli and Ciavola, 2011; Senechal et al., 2015; Tatui et al., 2016). 

L-BAIT extracts the luminosity peak of 55 pixels of the processed timex image, which 

creates a matrix for each image with the cross-shore and longshore locations of the bar crest 

(see Armaroli et al., 2006; Armaroli and Ciavola, 2011). This tool allows users to reject 
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erroneous luminosity peak positions. It also removes the obliquity of the image due to 

orientation of the Argus video system axes by rotating and translating them to horizontal 

axes (Armaroli and Ciavola, 2011). A comparison of bar morphology is possible using L-

BAIT because of an imbedded cross correlation function. This method has an accuracy of +/- 

8 to 10m and has been tested in other sites with  small tidal ranges, such as Biscarrosse, 

France and Romanian Black Sea Coast (Senechal et al., 2015; Tatui et al., 2016). 

Plant and Holman (1997) developed the Shoreline Intensity Maximum (SLIM) 

method to identify peaks in pixel intensities associated with breaking waves. This method 

uses the position of maximum perturbation of the actual nearshore profile with respect to a 

long-term averaged barless profile. The accuracy of this technique to make measurements of  

nearshore bars depends on the ratio of the measurement errors to the spatial or temporal 

variability of the beach (Plant and Holman, 1997). Therefore, if the variability of the beach 

increases, the error of the measurement also increases. Madsen and Plant (2001) modified 

SLIM by fitting a superposition of quadratic and Gaussian-shaped functions to intensities 

(i.e., higher pixel values) along a cross-shore transect that included the intertidal and 

breaking bar zone (Guedes et al., 2011). This method explains 30-40% of the observed slope 

change variance. The method was deemed sufficiently accurate to characterize beach slope 

dynamics, since the prediction error variance was equal to, or only slightly lower than, the 

observed temporal variability of the slopes (Madsen and Plant, 2001). However, this model 

cannot be used to predict the temporal variability of slopes, since its predictive capability 

does not outperform models that predict a constant, mean slope (Bapentire at al., 2017; 

Guedes et al., 2011; Madsen and Plant, 2001).  
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Beach Wizard is a data assimilation method used to estimate the nearshore subtidal 

bathymetry based on video-derived observations of wave dissipation and variations of the 

intertidal shoreline (van Dongeren et al., 2008). Beach Wizard can also be used on radar-

derived observations of wave celerity. This method produces estimates of uncertainties in 

bathymetry, which reflects the sensitivity of the data and true bathymetric evolution (van 

Dongeren et al., 2008). Beach Wizard employs an inverse model with fewer free parameters, 

incorporates wave celerity, and reduces the overall error to 0.3-0.5m (rms) (van Dongeren et 

al., 2008). Simulations show that Beach Wizard-predicted bathymetry falls within +/- one 

standard deviation of the in situ measured bathymetry. Multiple studies concluded that the 

model is capable of accurately predicting the bar bathymetry for short- and long-term 

temporal changes (Bergsma et al., 2016; Monteys et al., 2015; van Dongeren et al., 2008). 

However, Beach Wizard is limited because several estimations must be made during the 

model set-up phase (van Dongeren et al., 2008). These estimations of bathymetry and wave 

celerity, if erroneous, can significantly and negatively impact model results.  

Beachkeeper plus is an open source data fusion based analysis system that integrates 

timex, variance, time-stacked images, and geo-rectified images to quantify beach 

morphodynamics (Brignone et al., 2012). It uses the regularization theory to estimate the 

Direct Linear Transformation (DLT) coefficients in the geo-rectification process without the 

need to have detailed knowledge on the acquisition system, while reducing errors caused by 

camera distortion effects (Brignone et al., 2012; Simarro et al., 2017).  

3.2.4 Potential sources of error 

Images collected from video monitoring are prone to distortion and therefore the user is 

required to transform image coordinates to real world coordinates, similar to the geo-
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rectification process of still-camera imagery. The relationship between image and real world 

coordinates has been well established and embedded in the Argus video system (c.f., Holland 

et al., 1997). For example, prior to installation, a camera parameter calibration occurs in the 

lab. Some parameters, such as tilt, azimuth and roll, depend on installation and need to be 

included in the post- measurement algorithms used for geo-rectification (Holman et al., 

2003). Camera parameter calibration in surfcam systems prior to installation is more difficult 

since for most situations these cameras are deployed for other purposes for scientific 

research. In these cases, the user needs to identify the camera parameters and include the 

necessary calibrations during post-processing. 

Camera movement in video monitoring systems associated with rotation during 

recordings or inconsistent repositioning through time potentially limits data reliability. Error 

is reduced when fixed cameras are used because the field of view of the camera is least likely 

to get affected by factors such as strong winds and thermal expansion of the mount (Bracs et 

al., 2016; Holman and Stanley, 2007; Plant et al., 2007). The methods of data extraction, 

discussed in section 3.2.3, can isolate signals from noise that allows scientists to clean the 

images to retrieve reliable and accurate data. These methods are based on the assumption that 

the processes and variables that affect the signal can be separated by time or space to obtain 

accurate and reliable bathymetry data (Holman and Haller, 2013).  

3.3 Satellite imagery 

In the last decade, satellite remote sensors capable of mapping and measuring coastal 

systems and their changes at high spatial resolutions have been developed to help minimize 

the need for extensive, but spatially restrictive, field measurements (Dehouck et al., 2009; 

Holman and Haller, 2013; Klemas, 2011; Teodoro, 2016). The availability of high-resolution 
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satellites such as IKONOS, QuickBird, and World View, have renewed interest in applying 

optical remote sensing techniques to the acquisition of bathymetric information in shallow 

coastal areas due to their high spatial resolution (see Table 2.1)  and enhanced water 

penetration capabilities (Dehouck et al., 2009; Klemas, 2011).  Satellite remote sensors have 

global coverage supported by national and international agencies. High-resolution satellite 

imagery (Figure 1F) can also provide a more systematic perspective of the bar 

morphodynamics compared to near Earth imagery, however high resolution satellite imagery 

lacks the temporal frequency afforded by near Earth imagery (Lafon et al., 2004). Previous 

work in marine optics demonstrated that high-resolution satellite imagery is an efficient 

means to map shallow water bathymetry (Dehouck et al., 2009; Lafon et al., 2004, 2002; Lee 

et al., 1999). This previous work can also be parlayed to extract bar systems using satellite 

imagery, which can cover study sites with high spatial resolutions (Table 2.1) over several 

kilometers alongshore (Dehouck et al., 2009).  

The sensor type used to identify bar morphodynamics will vary depending on the 

spectral and radiometric resolution (Klemas, 2011). Spectral resolution is a measure of 

specific wavelength intervals that a sensor can record, while radiometric resolution is defined 

as a measure of the ability of a sensor to distinguish between two objects of similar 

reflectance values (Klemas, 2011). To use satellite imagery for coastal applications, such as 

bar identification, radiometric calibration of the spectral bands of the sensor has to be robust, 

since the reflectance of the ocean’s surface does not exceed a very small portion of the total 

signal measured by the satellite sensor (Dehouck et al., 2009; Table 2.1).  

To obtain bar morphology from satellite imagery, many characteristics need to be 

met. Among those characteristics, the study site needs to have relatively clear water so the 



www.manaraa.com

29 

 

bottom is visible (Dehouck et al., 2009). Images must be collected during periods of low 

wave energy to reduce noise in the data caused by wave breaking (Dehouck et al., 2009; 

Rodríguez-Martín and Rodríguez-Santalla, 2013). Satellites also have limited to no dwell 

capability, limiting the spatial coverage of the study site (Holman and Haller, 2013). Dwell 

time refers to the time a satellite remains steady over one part of the globe. Limited dwell 

also means that it is incredibly difficult to obtain a significant number of images for a 

particular location for a fix temporal scale (Rodríguez-Martín and Rodríguez-Santalla, 2013). 

Atmospheric corrections have to be extremely accurate in coastal environments because 

water turbidity can make pixel identification un-reliable (Dehouck et al., 2009; Siegel et al., 

2000); however obtaining accurate atmospheric corrections is often challenging. 

Atmospheric correction schemes need to be fully developed, validated and, if required, 

improved by obtaining in situ atmospheric measurements (Dehouck et al., 2009; Holman and 

Haller, 2013; Monteys et al., 2015). 

Errors in the data are introduced through the process of collection, classification, and 

interpretation and are propagated thereafter (Heuvelink, 2005). Satellite imagery can be 

modified using enhancing techniques, such as atmospheric corrections, to improve the image 

quality prior to second order analysis. However, these enhancing techniques can also add 

errors to the calculations that need to be taken into consideration in the cumulative errors of 

the analysis techniques. In situ data are often used, but not required, to validate and calibrate 

satellite-derived products (Dehouck et al., 2009; Lafon et al., 2004; Monteys et al., 2015).  

Satellite imagery is a valid tool to obtain bar morphology despite the limitations 

discussed above (Dehouck et al., 2009). While satellite imagery can be used to study bar 

morphodynamics (i.e., alongshore movements), there are still limitations regarding the 



www.manaraa.com

30 

 

temporal and sampling capacity of the sensors. Increasing these would help researchers 

calculate bar cross-shore movement and couple it with alongshore movement (Lafon et al., 

2004). Future, nearshore bar research would also benefit from the larger spatial scale 

provided by satellite sensors to study entire systems instead of being restricted to an area of 

interest within their study site. Satellite imagery provides a global scale, which allows the 

study nearshore bar systems in locations that were previously not possible due to study site 

restrictions or equipment lack of availability. 

4      Concluding Remarks 

It is clear that nearshore bars are complex systems and their study presents a challenge to 

researchers. One such challenge is that bar systems, similar to all coastal systems and 

dynamics, are site specific and time dependent. The methods or techniques used to collect 

data on bar systems, such as beach slope, wave height, tidal range, and bar position and 

morphology, vary depending on the study site. However, the resultant analysis of these 

observations made at each site allows for the development of a set of principles that govern 

holistic bar evolution. This review was prompted by the necessity to synthesize the wide 

variety of remotely sensed methods and techniques that have been developed to study 

nearshore bar morphodynamics.  

We demonstrated that video monitoring systems are the most popular method for 

remotely studying nearshore bars. These systems generate multiple deliverables (i.e., timex, 

long-time variance exposures and single snapshots) that allow for a comprehensive study and 

understanding of these dynamic regions. Lippmann and Holman’s (1989) pioneering video 

monitoring work continues to be the cornerstone of nearshore bar studies. Their method for 

extracting nearshore bar morphology has since been modified by through subsequent 
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contributions (e.g., Kingston et al., 2000; Masselink et al., 2014; Plant and Holman, 1997; 

and Ribas et al., 2010), but the original technique continues to be recognized as one of the 

most reliable.  

Although video monitoring is the preferred method for bar studies, it is becoming 

increasingly more common to employ satellite imagery. Satellite imagery has proven to be a 

useful tool for predicting nearshore bar locations, particularly when it used in conjunction 

with other datasets (i.e., sonar bathymetry estimates, wave climate data, and tide 

information). Reasonable estimations of water depth and bar location have been predicted 

using spatial prediction models, which require satellite imagery (Table 2.1; Dehouck et al., 

2009; Lafon et al., 2004; Rodríguez-Martín and Rodríguez-Santalla, 2013). Relatively recent 

satellite launches of more sophisticated sensors (Landsat-8 and SPOT 6 & 7) provide 

optimism for continued and lasting advances for the study of bars. These newer sensors have 

increased capabilities to study bar systems and the coastal zone and will therefore further the 

scientific understanding of these systems. The major challenge is to have satellite remote 

sensing techniques adopted as the routine tool in the assessment of the coastal zone. In order 

to do so, continuous research into the techniques employed for assessing change in the 

coastal environment is required and the elimination of the degree of uncertainty in some 

procedures should be a priority (Teodoro, 2016). 

Nearshore bars play a pivotal role in coastal dynamics. They are an important source 

of sediment of the beach-dune system and protect the shoreline from erosion by attenuating 

wave energy, yet we still lack a thorough understanding of the processes that control their 

formation and evolution. Remote sensing technologies have significantly advanced our 

potential to study bar evolution, morphology, and their response to events. Future studies 
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should further explore the application of surfcams and the adaptation of known Argus 

methods identification bar systems. This would expand the spatial coverage and reduce the 

cost of nearshore bar morphodynamic data currently available. Forthcoming studies should 

also consider satellite remote sensing to study bar systems. Satellite-based sensors provide an 

extensive and non-invasive perspective of bar systems allowing researchers to holistically 

investigate entire systems at one time and opening up isolated coastal areas for study. 

Ideally, the technology will continue to advance, increasing the acquisition and integration of 

remotely sensed data, which will lead to a more comprehensive perspective of nearshore bar 

formation and morphodynamics.  
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CHAPTER 3 

 

APPLYING RULE-BASED CLASSIFICATION FOR NEARSHORE BAR 

IDENTIFICATION1 

 

 

 

 

 

 

 

 

 

 

1Román-Rivera, M.A., Ellis, J.T. & Wang, C. To be submitted to Journal of Applied Remote 

Sensing.  
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1 Introduction 

1.1 Nearshore Bars 

The nearshore is the transition zone between the land and continental shelf and is 

significantly influenced by waves during normal and extreme conditions. This area is in 

constant evolution and its bathymetry varies extensively both temporally and spatially. Some 

coasts are characterized by sand structures called nearshore bars, which are significant 

reservoirs of sand. Their position and variability modify the response of beaches to different 

wave conditions that also influence long- and short-term beach-dune stability (Lippmann and 

Holman, 1990; Splinter et al., 2011).  

 Nearshore bars (Figure 3.1) vary in size, from 0.25 to 4.00m high (measured from the 

seabed to the bar crest), and from 25 to 50m wide, and are found in the inner shoreface 

aligned parallel (i.e. longshore or crescentic) or slightly perpendicular to the shore (i.e. 

transverse) (Davidson-Arnott, 2013; Dolan and Dean, 1985; Greenwood and Davidson-

Arnott, 1979; Masselink et al., 2011; Wijnberg and Kroon, 2002). Nearshore bars commonly 

have an asymmetric profile with a gentle seaward slope, a rounded or flat crest, and a steep 

landward slope (Davidson-Arnott, 2013; Wijnberg and Kroon, 2002). Water depth, swash 

processes, and currents induced by tidal range differences influence nearshore bar location 

(Wijnberg and Kroon, 2002). Nearshore bars exist under a wide range of hydrodynamic 

regimes, from swell- to storm-dominated wave environments and from micro- to macrotidal 

regimes (Wijnberg and Kroon, 2002). 
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Figure 3.1 Common nearshore bar morphologies. (A) the dashed box shows a 

crescentic bar in Egmond ann Zee, The Netherlands; (B) depicts a field of longshore bars 

at Bay St. Louis, Mississippi, USA; (C) illustrates several transverse bars at Cape Cod, 

Massachusetts, USA. All images were obtained from Google Earth. 

 

The number of bars at a particular location varies depending on nearshore slope. 

On barred coasts with moderately steep slopes, one to three bars are typically present 

(Figure 3.1A), while on beaches with gentle slopes, the number of bars can exceed 10 

(Figure 3.1B) (Davidson-Arnott, 2013; Greenwood and Davidson-Arnott, 1979; Short 

and Aagaard, 1993; Wijnberg and Kroon, 2002).  A variety of bar configurations are 

found globally, with the most common ones being transverse (Figure 3.1C), crescentic 

(Figure 3.1A), and longshore bars (Figure 3.1B).  

1.2 Traditional Methods for Monitoring Nearshore Bar Systems  
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Field-based experiments in the nearshore are often temporally and spatially limited due to 

the harsh conditions and the high cost of in situ instrumentation. Among the limitations that 

hinder field-based experiments are: instrument failure caused by breaking waves and 

dangerous currents, substantial erosion or accretion over short periods of time that may scour 

or bury traditional bottom-mounted sensors, and/or water-level changes related to tidal 

fluctuations at the study site that can change the fixed sensor’s domain range (Holman and 

Haller, 2013; Lippmann and Holman, 1989). The use of remote sensing technologies permits 

data gathering in regions that are not easily accessible (Román-Rivera and Ellis, 2019). 

Specifically regarding this study using multispectral imagery is beneficial in regions that 

have nearshore bars present but do not have the ideal conditions necessary required for an in 

situ study (Holland et al., 1997; Holman and Haller, 2013; Román-Rivera and Ellis, 2019). 

Active and passive remotely sensed instruments, such as radars, light detecting and 

ranging systems (Lidar), and video monitoring systems, have been employed to study 

nearshore bar systems (Aleman et al., 2017, 2011; McNinch, 2007; Ruessink et al., 2002). 

Remote sensing instruments used to monitor nearshore bars must have ample temporal 

frequency and duration to establish differences between short- and long-term evolution of 

bar systems (Bracs et al., 2016; Lippmann and Holman, 1990). Any method used to study 

nearshore bars, regardless if remotely sensed or not, must satisfy the following criteria: a) the 

shape of the bar must be easily identifiable; b) the position of the crest must be observable; 

and c) observations must be possible across a range of hydrodynamic conditions (Lippmann 

and Holman, 1990).  

 Coastal video monitoring systems are currently the preferred method used to study 

nearshore bar morphodynamics. The Argus station, for example, is the most frequently used 
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monitoring system. Argus was developed by the Coastal Imaging Lab (CIL) at Oregon State 

University, USA. The purpose of this system is to provide a low-cost sampling method to 

measure the hydrodynamic forcings and the corresponding bathymetric responses of 

nearshore environments (Holman and Stanley, 2007). The Argus coastal imaging system has 

collected imagery for almost three decades and has evolved to meet a range of research and 

management needs. Over time other video systems have been developed based on the Argus 

utilities and software (i.e. Cam-Era, Kosta System, CostalCOMS, and Horus), but Argus 

continues to be the most used video monitoring system by the scientific community and by 

coastal managers (Bracs et al., 2016; Nieto et al., 2010; Splinter et al., 2018). At the time of 

manuscript submission there are approximately 50 operational sites found in Australia, 

Brazil, England, Italy, the Netherlands, New Zealand, Japan, Spain, and the United States 

(see Román-Rivera and Ellis, 2019 and references therein). 

 Even though coastal video monitoring systems have proven to be a valuable tool to 

study nearshore bar systems and to provide a wealth of data on bar formation, evolution, and 

characteristics, they still are subject to a variety of limitations. The limited field of view, 

making it virtually impossible for researchers to study bar systems that can extend for tens to 

hundreds of kilometers depending their location and if they are single or multiple bar 

systems (Davidson-Arnott, 2013; Lippmann and Holman, 1990; Wijnberg and Kroon, 2002). 

Video monitoring systems, such as Argus, require an in situ infrastructure that is dependent 

on maintenance and is susceptible to damage by severe weather (i.e. hurricanes and/or severe 

thunderstorms, and erosion) and, in some instances, vandalism. Video monitoring systems 

also cannot be installed in places difficult to reach, leaving those sites not accessible for 

research. 
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1.3 Satellite Imagery and Nearshore Bars 

Over the last quarter of the century, satellite remote sensing has been applied to map and 

measure coastal systems with reduced need for extensive field measurements (Dehouck et 

al., 2009; Holman and Haller, 2013; Klemas, 2011). Previous work in marine optics 

demonstrated that high-resolution satellite imagery provides and efficient mean to map 

shallow water bathymetry (Dehouck et al., 2009; Lafon et al., 2004, 2002; Lee et al., 1999). 

These study findings can be used to extract nearshore bar systems using satellite imagery, 

which can cover study sites at a few meter resolution over several kilometers alongshore. 

  The use of satellite imagery has provided promising results of alongshore bar 

movements (Ranasinghe et al., 2004.; Ribas et al., 2017, 2010). As discussed in Chapter 2, as 

technology improves and the temporal and spatial resolution of the sensors increases, we will 

be capable of gathering more precise data regarding bar formation and degradation (Lafon et 

al., 2004; Román-Rivera and Ellis, 2019). Nearshore bar research has benefited from the 

finer spatial scale provided by satellite sensors to study entire systems instead of being 

restricted to an area of interest between 3-6 km within the study site provided by in situ 

instrumentation (Lafon et al., 2002; Rodríguez-Martín and Rodríguez-Santalla, 2013). 

Satellite imagery also provides a global scale, which allows the study of nearshore bar 

systems in locations that were previously not possible to access due to site restrictions or 

equipment availability (Lafon et al., 2002; Rodríguez-Martín and Rodríguez-Santalla, 2013).  

Some considerations that should be taken into account when using satellite imagery 

to obtain bar morphology include selecting a site that has relatively clear water where the 

seafloor is visible, and must be collected during periods of low wave energy to reduce noise 

in the data caused by wave breaking (Dehouck et al., 2009; Rodríguez-Martín and 
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Rodríguez-Santalla, 2013). Acquiring images that fit the aforementioned parameters will 

allow for a more robust application of the bar criteria discussed in section 1.2. In this sense, 

the very high-resolution (VHR) satellite imagery provides decent spatial, spectral, and 

temporal resolution that fits in this requirement. VHR remote sensing images are becoming 

increasingly available, which offers us an opportunity to advance our understanding of 

coastal systems such as nearshore bars (Cheng et al., 2015; Ehrlich et al., 2009; Wang et al., 

2018). 

This study develops a rule-based object-based image analysis (OBIA) approach for 

bar identification to acquire bar characteristics (i.e. presence or absence of bars, bar 

morphology, bar count, and offshore distance from wet/dry land) using VHR multispectral 

imagery.  We also compare the accuracy of the nearshore bar characteristics obtained from 

the multispectral imagery to those characteristics derived from the traditional Argus video 

monitoring system. The approach introduced in this study is transferable to other locations 

where nearshore bars are present. This manuscript focuses on the development, application, 

and verification of this rule-based OBIA approach for nearshore bar identification. 

Discussions on the morphodynamics of the bars are beyond the scope of this manuscript. 

1.4 Study Area 

To develop a comprehensive approach to identifying nearshore bar systems in different 

environments, three study sites (Figure 3.2) were selected according to their beach 

characteristics. These sites satisfy two criteria: 1) nearshore bar systems have been 

previously identified in the region and 2) a video monitoring system has previously been in 

place. The presence of a video monitoring system enables a comparison of the efficacy of 

identifying nearshore bar characteristics using multispectral imagery. The rule-based OBIA 
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approach to identify bars was developed and verified at Duck, NC and Cassino Beach, BRA. 

After the approach was verified it was implemented at Bay St. Louis, MS, which is 

characterized by a well-developed multibar system. The selected sites all have a microtidal 

regime (tidal range <2 m) are: 

A. Duck, North Carolina, USA (intermediate beach state): The United States Corps of 

Engineers Field Research Facility for the Coastal and Hydraulics Laboratory in 

Duck, North Carolina was one of the first Argus locations. The Argus system at 

Duck has eight cameras that have been operational since October 1986. The 

breakthrough research using video monitoring systems to monitor nearshore bars was 

conducted at this site (Lippmann and Holman, 1989). This site has an average wave 

height of 0.5-2.0 m and an average wave period between 8.0-10 s.  

B. Cassino Beach, Rio Grande do Sul, BRA (dissipative beach state): This Brazilian 

beach is characterized by coastal dynamics similar to those found on the west coast 

of the United States with 1-2 bars present at a particular time. An Argus video 

monitoring system was installed at this site in 2006 and it acquired data until 2014. 

Although Cassino Beach and Bay St. Louis are both dissipative beaches, their wave 

climate conditions are substantially different. Cassino Beach’s average wave heights 

are 1.0-1.5 m, with periods averaging 6.0-12.0 s. 

C. Bay St. Louis, Mississippi, USA (dissipative beach state): A well-developed bar 

system is located at Bay St. Louis, Mississippi. The United States Naval Research 

Laboratory at NASA Stennis Space Center oversees the Argus tower at the 

Washington Street Pier. These data are available from 2002-2005. Bay St. Louis has 

an average wave height of 0.3-1.0 m and average wave period of 0.5-3.0 s.  
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Figure 3.2 The three study sites: A) Duck, NC; B) Bay St. Louis, MS; C) Cassino 

Beach, RS; D) Location of nearshore bar systems. The yellow triangle (    ) 

identifies the location of the Argus tower. 

 

2 Data 

2.1 Multispectral Imagery 

Two high quality multispectral images at each study sites were obtained from Digital Globe. 

Digital Globe manages the WorldView satellite series and QuickBird. The imageries 

acquired were already georectified and atmospherically corrected. 

The selected images correspond to years with concurrent Argus Timex data sets and 

to winter and summer months for Duck, NC and Bay St. Louis, MS to provide two distinct 

beach state conditions at each site. For Cassino Beach, BRA it was not possible to obtain a 

suitable winter VHR image that corresponded with Argus imagery due to the high wave 

energy this coast receives during the winter months. Instead a summer (11/19/2010) and an 

autumn (02/09/2010) image were acquired. To conduct the rule-based OBIA approach, 4 
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multispectral bands were used (visual and NIR). The VHR images at each site are listed in 

Table 3.1.  

 

Table 3.1 VHR images used for this study.  
Location Source Date Resolution 

 Spectral Spatial 

Duck, NC WorldView-3 08/16/2016 RGB, NIR 30 cm 

Duck, NC WorldView-3 02/24/2017 RGB, NIR 30 cm 

Cassino Beach, RS WorldView-2 02/09/2010 RGB, NIR 50 cm 

Cassino Beach, RS WorldView-2 11/19/2010 RGB, NIR 50 cm 

Bay St. Louis, MS QuickBird 02/02/2003 RGB, NIR 60 cm 

Bay St. Louis, MS QuickBird 07/11/2005 RGB, NIR 60 cm 

 

2.2 Argus Data 

Argus stations comprise four to five video cameras with a 1024x768 pixel resolution, a field 

of view that spans 180°, and aim angle within 0.1 pixel or 0.004° (Holman and Stanley, 

2007). These parameters allow for a spatial coverage of 3-6 km of the nearshore (Aarninkhof 

et al., 2000; Bracs et al., 2016; van Enckevort et al., 2004). An Argus system provides a 10-

minute time exposure image (or Timex) from the mathematical mean of images collected 

every 30 seconds (Holman and Stanley, 2007). Timex runs initiate at the top of the hour for 

12 (assumed) hours per day. For this study we used the Timex imagery to verify the 

nearshore bar classification. Timex images are often used to delineate areas of wave breaking 

and obtained by averaging fluctuations due to incident wave modulations (Lippmann and 

Holman, 1989; Ribas et al., 2010; van Enckevort et al., 2004). Therefore, these images can 

be used to calculate the location of bars based on were the waves break as shown in Figure 

4.3 within the yellow box.  
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Figure 3.3 Example of a Timex image obtained from the Argus System at the USACE 

Field Research Facility at Duck, NC. The pier is at the image center and a nearshore bar 

is within the dashed box. The scale in the image is in meters, depicted with the white 

number on the image. Imagery date: 02/24/2017. 

 

Argus imagery was obtained from different sources, since the video monitoring 

systems were maintained by different entities. The Argus Timex imagery for Duck, NC was 

provided by U.S. Army Engineer Research & Development Center, Coastal & Hydraulics 

Laboratory, Field Research Facility, Duck, NC. The Timex imagery can be downloaded from 

the FRF Data Portal (https://frfdataportal.erdc.dren.mil/). Imagery for Bay St. Louis was 

provided by Dr. K. Todd Holland from the Naval Research Laboratory at the NASA Stennis 

Space Center. Lastly, Argus Timex imagery for Cassino Beach, RS was provided by Dr. 

Lauro Calliari from the Federal University of Rio Grande, Brazil. 

 

3 Methodology 

3.1 Decision Tree for Shoreline Bar Identification: Preparation and Execution 

Decision trees are a multistage classification approach to break up a complex procedure into 

a union of several simpler decisions. Decision trees are an effective tool due to their 

conceptual simplicity and computational efficiency.  

 This study applies an object-based (or objected-oriented) image analysis (OBIA) 

classifier to identify the nearshore bars at each location. Increased spatial resolution imagery 

https://frfdataportal.erdc.dren.mil/
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favors OBIA classification methods over other per-pixel classification analyses because it 

allows the analyst to look at an object composed of more than one pixel (Blaschke, 2010; 

Heumann, 2011). In OBIA, groups of pixels are classified into representative shapes and 

sizes. This process is a multi-resolution segmentation that produces homogenous image 

objects by grouping pixels  based on texture, context, and geometry (Blaschke, 2010; 

Blaschke et al., 2014; Bouziani et al., 2010; Tarabalka and Tilton, 2012). Each class contains 

one or more rule that is based on the user’s knowledge of a particular feature. The rules may 

contain one or more attributes such as spectral, spatial or texture, from which the user can 

assign a specific range of values. 

 The Feature Extraction Module (ENVI Fx) in ENVI 5.5.1 package (Jahjah and 

Ulivieri, 2010) was used. ENVI Fx automatizes the extraction of features from high 

resolution imagery based on spatial, spectral, and textural characteristics (i.e. dimensions of a 

feature, pixel value, and/or appearance of an object given by its shape, density or 

arrangement). Salient visual image interpretation cues are quantified for a feature, machine 

learning components are trained with these cues, and the learned cues are applied to the 

imagery to derived features. The tool allows the user to customize the spatial, spectral, and 

textural parameters for extraction of features to a specific application. A summary of the 

workflow of the module is shown in Figure 3.4.  

Step A is to select the base images from which the features will be extracted and 

prepare them for analysis (Figure 3.4A). A mask was created using ENVI’s Build Raster 

Mask tool to specify the area of interest within the image to confine the processing and to 

reduce the overall processing time by focusing on the nearshore area that contains the bars. 

The subaerial beach is not included. The mask matched the Argus camera field of view of 
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each location and generated a polygon over the VHR multispectral imagery. The extent of 

the camera field of view was obtained from the results produced from the Argus Timex 

image produced in Matlab (see section 3.2). 

 

 

Figure 3.4 Recommended ENVI Fx workflow. This workflow has not been 

previously applied for nearshore bar extraction. (*) means that this step is optional. 

  

  Step B is to locate the objects, i.e. the nearshore bars in this study (Figure 3.4B). 

First, the images were segmented, which refers to the process of partitioning the image by 

grouping neighboring pixels with similar feature values together. This partitioning or 

segmentation takes places by assigning the image a value for Scale Level. The Scale Level 

value in the ENVI Fx for each location was different since the nearshore bars at each 

location have different scaling parameters. The Scale Level is computed from a normalized 

cumulative distribution function of the pixel in the image to effectively delineate the 

boundaries of the features without over-segmenting the features (Jin, 2012). A proper Scale 

Level keeps objects with the most distinct edges. The Scale Level values range from 0.0 
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(finest segmentation) to 100.0 (coarsest segmentation), the lower the Scale Level value, the 

more segments are going to be defined. During segmentation, spectral, morphological, and 

spectral attributes are calculated and included in the image classification to avoid noise in the 

pixel-based classification. The segmentation was completed using an edge-based process. 

This edge-based process identifies features with distinct boundaries. With this method, ENVI 

computes a gradient image using a Sobel edge detection method, where the highest pixel 

values represent areas with the highest pixel contrast. After multiple tests, the Scale Level 

values used in this study were: Duck, NC: 53.4 and 90.0, Bay St. Louis, MS: 65.0 and 80.0, 

and Cassino Beach, RS: 50.0 and 53.4.  

  After defining the segments, merging was necessary to aggregate the small segments 

within larger textured areas where there was over-segmentation. Over-segmentation occurs 

where the feature is segmented, in this case the nearshore bars, and fractured into 

subcomponents. Over-segmentation may increase the chance that important boundaries were 

extracted, but it does so at the cost of creating insignificant boundaries (Taguchi et al., 2008). 

The Merge Level parameter in the ENVI Fx represents the threshold lambda value that range 

from 0.0 to 100.0. The values used for the images were: Duck, NC: 90.0 and 90.7, Bay St. 

Louis, MS: 42.9 and 88.5, and Cassino Beach, RS: 87.1 and 90.0. Merge Level values were 

assigned based on visual interpretation. While visual interpretation utilizes the spectral, 

contextual, and textural information of the imagery to identify the boundaries of the 

nearshore bars, this may affect the overall results of the feature extraction process by 

introducing biases to the interpretation (Petit and Lambin, 2001; Shalaby and Tateishi, 

2007). 
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Step C is feature extraction. After segmentation and merging took place, rules were 

created to identify the bars. The rules applied to identify the bars were based on the average 

pixel values of a specific band over the bars for each image (Table 3.2). The bars at Duck, 

NC and Cassino Beach, RS were found deeper in the water column, therefore the green band 

was used to segment the images at these two locations. At Bay St. Louis, MS, the bars can be 

found closer to the surface and the NIR band provided a better base for the segmentation 

process to take place. For the rule-based classification spectral attributes were computed on 

each band of the input image, including the spectral mean (mean value of the pixels 

comprising a region in a particular band) and the spectral standard deviation (standard 

deviation value of the pixels comprising the region of a particular band). The pixel values 

shown in Table 3.2 were selected based on visual interpretation of the segmented image 

created. 

 

Table 3.2 Pixel values used for rule-based classification approach. For Duck, NC and 

Cassino Beach, RS the green band was used to segment the images and acquire pixel 

values. For Bay St. Louis, MS the NIR band was used. 
Location Date of 

VHR image 

acquisition 

Pixel Values 

Duck, NC, 

USA 

08/16/2016 

02/24/2017 

151.83-246.50 

177.50-248.00 

Cassino Beach, 

RS, BRA 

02/09/2010 

 11/19/2010 

99.62-154.08 

115.65-154.94 

Bay St. Louis, 

MS, USA 

02/02/2003 

 07/11/2005 

113.79-136.73 

120.92-163.25 

 

 After the bars were classified, the images were exported to ArcGIS where bar width, 

height, count, and offshore distance were calculated using the Calculate Geometry tool. 
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(1) 

3.2 Verification of Satellite-Identified Shoreline Bars  

Argus Timex data were obtained at the same location and time as the VHR images are used 

to verify the classified nearshore bars. Within the Timex images, nearshore bar 

characteristics are calculated using a Matlab code freely available on the Coastal Imagine 

Research Network (CIRN) web page (https://coastal-imaging-research-network.github.io/#/). 

This Matlab code, called cBathy Toolbox, allows bar characteristics, such as count, length, 

and width to be calculated and extracted from Argus images.  

  In this study, it is assumed that the Argus-based bar identification extraction method 

is the standard (or ‘truth’). The proposed method is verified in two out of the three locations.  

The method was implemented at Bay St. Louis, MS. A comparison is completed for two 

dates at each location to compare the bar systems during different conditions. Bar width, 

height and count, and distance from the average wet/dry line are compared using a threshold 

of acceptable error of ≤10% (Lippmann and Holman, 1990, 1989; Ribas et al., 2017). Error 

was calculated using the formula (Equation 3.1) comparing the measurements acquired using 

the rule-based OBIA approach and those extracted from the Argus Timex imagery.  

%𝑒𝑟𝑟𝑜𝑟 =  (
𝑚𝑅− 𝑚𝐴

𝑚𝐴
) ∗ 100 , 

where mR represents the measurement obtained from the rule-based OBIA approach and mA 

represents the measurement obtained from the Argus Timex imagery (what we consider 

‘truth’). The percent error formula (equation 1) was the most suitable method for data 

verification due to the binary nature of the data being extracted. A positive percent error 

indicates the rule-based OBIA approach is overestimating the measurements compared to 

Argus. A negative error indicates the rule-based OBIA approach is underestimating the 

measurements compared to Argus. 

https://coastal-imaging-research-network.github.io/#/
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4 Results and Discussion 

Single nearshore bars systems were successfully identified and characterized at both 

locations.  Bar count, offshore distance of the bar to the wet/dry line, and average length and 

width of the bars were extracted. After the new approach was verified, the approach was 

applied to the multiple bar system located at Bay St. Louis, MS. The results for each location 

are presented and discussed below.  

4.1 Rule-Based OBIA Approach Development and Verification 

4.1.1 Duck, NC 

Duck, NC has a discontinuous single bar (Figure 3.5). The bar morphology varies between a 

longshore and crescentic bar. In the coastal community, these morphologies are known as 

rhythmic bars and the changes between the two result from a coupling mechanism between 

the beach hydrodynamics and bathymetry (see Davidson-Arnott, 2013). The summer image 

(08/16/2016) presented a longshore bar south of the pier, while the winter image 

(02/24/2017) identified a bar north of the pier and another one southern of it. The bars 

identified in the winter were much larger than the single bar identified during the summer. 

The bar dimensions at Duck, NC are shown on Table 3.3. 

 When classifying the winter VHR image (02/24/2017), a bar was identified south of 

the pier. This bar could not be verified using Argus because that portion of the image was 

over exposed. The VHR measurements shown on Table 3.3 are those obtained from the bar 

identified north of the pier (Figure 3.5B). This bar presented characteristics of a crescentic 

bar with an approximate length of 120.74 m and a width of 4.50 m. It was approximately 15 

m from the wet/dry line. 
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Figure 3.5 Classified bars at Duck, NC. A) 08/16/2016: summer conditions; B) 

02/24/2017: winter conditions. 

 

 

Table 3.3 Bar characteristics at Duck, NC based on imagery from 08/16/2016 and 

02/24/2017. The rule-based OBIA approach results use the VHR and the Argus Timex 

images. 
 Study 

Area 

(km) 

Bar count Average bar 

length (m) 

Average bar 

width (m) 

Distance 

wet/dry line 

(m) 

08/16/2016      

VHR 1.80 1 106.04 3.55 34.10 

Argus 1.80 1 115.26 3.64 37.32 

Error   -8% -2% -9% 

02/24/2017 

VHR 

 

1.80 

 

2 

 

715.25 

 

22.96 

 

107.20 

Argus 1.80 1 796.86 24.78 100.14 

Error   -10% -7% 7% 
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Duck, NC presented interesting challenges for using multispectral imagery for bar 

identification. The spectral signature for the bars was similar to that of breaking waves, 

making them difficult to distinguish during the segmentation process. Therefore, it is 

important to find images with little to no waves breaking and foam near the shoreline. The 

OBIA approach underestimated the bar dimensions (length and width) but was inconsistent 

with the estimation of the location (Table 3.3). It underestimated the distance of the bar from 

the wet/dry line in the summer image (08/16/2016) and overestimated the distance in the 

winter image (02/24/2017). Overall, the error is still within the acceptable threshold (≤10%), 

however we posit the high wave energy could have contributed to the higher error 

percentages when compared to the site at Cassino Beach. 

4.1.2 Cassino Beach, BRA 

Similar to the Duck site, Cassino Beach is a single bar system (Figure 3.6). The bar found at 

this location is a nearshore bar. The nearshore bar extends 333.28m in the summer 

(02/09/2010), while the bar identified later that year during spring (11/19/2010) is shorter 

with a length of 279.45m. The November bar is substantially narrower (8.02m) than it was 

nine months earlier (26.11m). Another difference is that the bar in February is located further 

offshore (51m) than the bar identified in November (13.62m). 

 The bars at Cassino Beach were easier to identify compared to Duck since the water 

column at Cassino is clearer and the beach has lower wave energy. The percentage error for 

the bar characteristics is generally lower than those obtained at Duck and within the <10% 

error threshold. (Table 3.4). At this location the OBIA approach over-estimated location and 

exhibited mixed results regarding bar dimensions. VHR imagery results underestimated bar 

length and width on 02/09/2010 and over-estimated those same parameters on 11/19/2010.  
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Figure 3.6 Classified bars at Cassino Beach, BRA. A) 02/09/2010; B) 11/19/2010. 

 

 

Table 3.4 Bar characteristics at Cassino Beach, BRA based on imagery from 02/09/2010 

and 11/19/2010. The rule-based OBIA approach results use the VHR and the Argus 

Timex images.  
 Area 

(km) 

Bar count Average bar 

length (m) 

Average bar 

width (m) 

Distance 

wet/dry line 

(m) 

02/09/2010      

VHR 2.00 1 333.28 26.11 51.00 

Argus 2.00 1 340.35 28.46 47.53 

Error   -2% -8% 7% 

11/19/2010 

VHR 

 

2.00 

  

279.45 

 

8.02 

 

13.62 1 

Argus 2.00 1 270.64 7.64 12.86 

Error   3% 5% 6% 
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4.2 Rule-Based OBIA Approach Implementation: Bay St. Louis, MS 

After verifying the results of the rule-based OBIA identified nearshore bars using VHR 

images at Duck, NC and Cassino Beach, RS, we implemented the approach at Bay St. Louis, 

MS to characterize a multiple bar system. The multiple longshore bar system at Bay St. 

Louis location could clearly be seen after the rule-based OBIA approach was applied to both 

images at this location (Figure 3.7). The bars closer to the shoreline, in shallower depths, 

could be identified easier than those bars located further offshore, in deeper water since there 

was clearer pixel separation between the nearshore bar and sediment suspended in the water. 

The main challenge with bar identification at this location is the suspended sediment located 

further offshore surrounding the deeper bars. During image classification, the spectral values 

for the deeper bars and the suspended sediment are the same, which is a limitation. 

 The bars at this location tend to be organized in continuous rows 2.0 to 4.0 meters 

from each other. The width of the bars varies within the images. Wider (8.0 to 12.0 m) bars 

are present in the western portion of the study site, and thinner (3.0 to 5.0 m) bars are found 

in the eastern portion of the study area (Table 3.5). The number of bars identified is also 

higher on the western side of the study area than the eastern, which may have to do with the 

wave angle of approach. Also, the Washington Pier is located at the western extreme the 

study site (not shown in Figure 3.7 since the pier was not included in the mask), which 

disrupts the sediment flow and affects the organization and formation of the surrounding 

bars. 

Table 3.5 Bar characteristics at Bay St. Louis, MS. The rule-based OBIA approach 

results are shown for 02/02/2003 and 07/11/2005. 
Date Area (km) Bar count Average bar 

length (m) 

Average bar 

width (m) 

Distance wet/dry 

line (m) 

02/02/2003 2.00 13 633.39 10.86 6.0 

07/11/2005 1.16 12 344.12 4.56 8.0 
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Figure 3.7 Classified bars at Bay St. Louis, MS. A) Winter: 02/02/2003; B) Summer: 

07/11/2005. 

 

 
 

  The bars identified by Argus are located in the same region where the rule-based 

classification approach cannot distinguish suspended sediment from bars. Therefore, data 

verification at this location was not possible. Nonetheless, in the previous two sites we 

demonstrated that the use of the rule-based classification and multispectral imagery provides 

a wealth of information about the bars at this location, making it possible to study a larger 

portion of the system than that provided by the video monitoring system. The 

implementation of the rule-based OBIA approach at Bay St. Louis demonstrates that it can 

also be used to identify multiple bar systems and can be applied to systems located in Case 2 

waters. As discussed above there are some limitations associated to applying the method to 
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environments with this condition (case 2 waters), specifically related to suspended sediment 

and clarity of the water column, but identification of bars is still possible.   

The application of the rule-based classification to identify nearshore bars at Duck, 

NC and Cassino Beach, BRA was successful with percent errors of ≤10%. At Duck, NC 

measurements were underestimated, while at Cassino Beach most measurements were over-

estimated. These discrepancies are likely due to the conditions of the sites at these locations 

at the time the VHR images were obtained. Discrepancies might have also resulted from 

visual interpretation error during the segmentation and merging process. The application of 

the approach at Bay St. Louis, MS demonstrates that multispectral imagery can be used to 

study nearshore bars systems.  

Ancillary data can be added during Step A of the feature extraction process (Figure 

3.4) to improve the results of the OBIA approach. More data, such as nearshore bar volume 

and height, could be obtained if ancillary data (i.e. bathymetry), are available to supplement 

the bar identification process. Bathymetric data will also refine the nearshore bar boundaries, 

which will improve the results of the rule-based OBIA approach. Unfortunately, temporal 

coincident bathymetric data were not available for all locations. However, bathymetric data 

should be used with caution for these types of studies since, in some instances, it is not 

updated at the same temporal frequency at which nearshore bar systems change.  

The limitations associated with this workflow are similar to those associated with any 

remote sensing study, since very specific image characteristics must be in place to 

successfully identify the bars. The images must not contain any sun glint, little to no waves 

or wave foam, and little to no suspended sediment since it affects the segmentation and 

classification process. Regardless of the limitations, this approach can be applied to 
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nearshore bar environments, including those systems located in regions were there are no 

video monitoring systems available. Nearshore bars influence dynamics in of the beach and 

dune systems (c.f. Davidson-Arnott, 2013). Therefore understanding how nearshore bars 

evolve and how their changes are related to the beach-dune response are important to create 

effective coastal management plans and to protect coastal infrastructure and resources. The 

application of the rule-based OBIA will allow coastal scientists and managers to increase the 

spatial and temporal capabilities at which they study nearshore bar systems. The use of the 

approach will also make the acquisition of nearshore bar characteristics accessible at a 

decreased cost compared to in situ projects. 

Since the launch of IKONOS in 1999, an increased number of commercial satellites 

(including small satellites) have been in operation. Their capability of acquiring high-

resolution imagery with a large spatial extent and having repeated cycles is superior in 

continuous observation and characterization of nearshore bars. Future research should focus 

in applying the rule-based classification approach introduced here to identify nearshore bars 

can be applied to aerial photography, as well as free online resources such as Google Earth, 

ArcGIS basemaps, and Bing imagery, for example, and the use of unmanned automated 

vehicles (UAVs) are opening the doors to lower cost equipment to attain nearshore bar 

characteristics.  

Nearshore bar research can benefit by the larger spatial scale provided by satellite 

sensors to study the entire coastal system instead of being restricted to a limited area of 

interest monitored by station-based video systems. Satellite imagery provides a global scale, 

which allows the study of nearshore bar systems in locations that were previously not 

possible due to site restrictions or equipment availability. 
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5 Conclusions 

This study develops a rule-based OBIA to identify nearshore bars from VHR imagery and 

makes an important methodological contribution to nearshore bars research. Rule-based 

classification OBIA approach allows bar characteristics such as bar length, width, and count, 

as well as distance from the wet/dry line to be measured. Important implications for coastal 

scientists and managers emerge from this development since we are now able to obtain these 

characteristics without being intrusive in the environment, at a lower cost, and in locations 

that weren’t accessible before. The use of VHR imagery will also allow the study of the 

entire nearshore bar system, which can extend from tens to hundreds of kilometers, and 

understand how it changes and evolves in its entirety through time instead of observing a 

fraction of the system as it was previously done with in situ studies and with video 

monitoring systems. The method was verified using Argus Timex imagery at two sites, 

Duck, NC and Cassino Beach, BRA, and implemented at Bay St. Louis, MS. Single and 

multiple bar systems with different morphologies were identified and characterized at three 

locations used in this study.  

Using multispectral imagery provides a lower cost alternative to monitor coastal 

systems, compared to in situ studies or to the preferred video monitoring systems (Bracs et 

al., 2016; Holman and Stanley, 2007; Lippmann and Holman, 1990) since it requires no 

equipment maintenance. This approach provides the opportunity to study bar systems located 

in regions that are not accessible for field studies or were infrastructure, such as video 

monitoring systems, can be mounted.  

The field of coastal geomorphology studies the dynamics and processes that occur in 

coastal regions. The higher spatial and temporal scale capabilities provided by VHR imagery 
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could provide in the future important information regarding bar evolution. Understanding the 

spatiotemporal scale at which nearshore bar systems evolve and how those patterns are 

related to beach-dune response are important to create effective coastal management plans to 

protect coastal resources and infrastructure in the region. The application of rule-based 

classification to identify nearshore bars is a novel approach that will increase the spatial and 

temporal capability to study nearshore bar systems at a decreased cost compared to in situ 

projects. Integrating traditional remote sensing technology to coastal management and 

studies will increase data accessibility to researchers, managers, and stakeholders in order to 

better understand, manage and protect our coastlines.
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CHAPTER 4 

 

BEACH-DUNE RESPONSES TO HIGH-ENERGY WAVE EVENT CONDITIONS 

INFLUENCED BY NEARSHORE BAR MORPHOLOGY1 

 

 

 

 

 

 

 

 

 

 

 

1Román-Rivera, M.A. & Ellis, J.T. To be submitted to Annals of the Association of American 

Geographers.
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1 Introduction 

The coastal zone is one of the most dynamic geomorphic systems on Earth (Elko and Holman, 

2014; Sherman and Bauer, 1993). It possesses natural, commercial, recreational, ecological, and 

industrial value that is vital to any country (CZMA, 16 U.S.C. § 1451, section 302). This densely 

populated region is threatened by short- and long-term erosion caused by sea level rise, tropical 

systems, winter storms, and anthropogenic influences (Clark, 1997; Elko and Holman, 2014; 

Thia-Eng, 1993). Before the 20th century, most coastal zone and nearshore studies were 

conducted by engineers and involved the planning, design, and construction of projects aimed at 

counteracting subsidence, protecting shorelines, facilitating navigation, and building harbors 

(Orme, 2013). Following the ideas of William Morris Davis, geographical and geomorphological 

studies related to the evolution of the coast and coastal classifications emerged in the first decade 

of the 20th century (Bird, 1993; Davidson-Arnott, 2010). It was during this time that geographers 

got heavily involved in coastal studies (Stephenson and Brander, 2003), an involvement that 

continues to this day. Geography provides an ideal framework for coastal system studies because 

it offers the opportunity to establish linkages between morphological changes and processes at 

intertwining temporal and spatial scales (French and Burningham, 2011; 2013; Jackson et al., 

2019). The geographic framework also permits the incorporation of anthropogenic topics to 

coastal studies by providing knowledge to understand our role in the evolution and development 

of coastal systems. 

Technologic advances in the 1950s allowed coastal geomorphologists to conduct more 

comprehensive studies of the nearshore, which previously had proven challenging (French and 

Burningham, 2009; Román-Rivera and Ellis, 2019). The nearshore is a transition zone between 

the land and the continental shelf that is significantly influenced by waves during normal and 

extreme conditions. It represents an important and highly active region of the coastal system. 
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Accordingly, bathymetry in this region varies extensively (Splinter et al., 2011; Wright and 

Short, 1984).  

The nearshore is often dominated by sand bars. Sand bars naturally protect the coast 

against erosion by dissipating wave energy (Masselink et al., 2011; Short and Hesp, 1982). They 

are substantial reservoirs of sand, and thus, they may impact the response of beaches to different 

wave conditions. Bar position and morphologic variability also influence long- and short-term 

beach and dune stability (Lippmann and Holman, 1990). While interactions between the beach, 

dune, and bar systems are recognized in the literature (e.g., Bauer, 1991; Houser, 2009; Pye, 

1982; Sherman and Bauer, 1993), few studies have investigated the intricacies of the 

relationships between these features. This research will, therefore, focus on studying the 

dynamics of the dunes, beach, and, specifically, nearshore bars to understand how these three 

coastal features systematically function. We follow a holistic approach similar to Short and Hesp 

(1982) instead of those studying the individual features in isolation (i.e. Bowen, 1980; Houser 

and Hamilton, 2009; Masselink et al., 2014; Wijnberg and Kroon, 2002). 

1.1 Nearshore bars and beach-dune characteristics 

Nearshore processes, such as sediment and water movement generated by waves and 

currents, play an important role in determining the morphodynamic beach state. These 

processes shape the overall geometry of the foreshore, beach slope, grain distribution, and 

beach width (Houser and Ellis, 2013; Sherman and Bauer, 1993), which in turn affect and 

influence dune formation. Nearshore characteristics (i.e., presence or absence of bars, bar 

count, and slope) regulate sediment delivery to the subaerial beach (Bauer, 1991; Pye, 1982; 

Sherman and Bauer, 1993). Knowledge of bar morphodynamics can provide a better 

understanding of the subaerial beach-dune system dynamics. The nearshore morphodynamic 

system is a direct manifestation of the hydrodynamic and morphodynamic boundary 
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conditions. These boundary conditions depend on the wave climate, nearshore currents, 

beach slope and orientation, sediment characteristics, and distribution.   

Short and Hesp (1982) provided the benchmark classification of beach-dune system 

morphologies using the surf zone characteristics of slope, breaker height, presence or 

absence of bars, and bar morphology. Nearshore characteristics influence the wave height 

and energy received at the beach. The authors integrated the surf zone and beach 

characteristics to identify beach states as dissipative, intermediate, and reflective, each with 

characteristic slopes and erosion rates (Short and Hesp, 1982). Later, the linkages between 

nearshore processes and beach states were investigated to include near bottom current 

variabilities (Ruessink and Jeuken, 2002) and wave climate (Wright and Short, 1984). 

Wright and Short (1984) specifically provided bar characteristics for each Short and Hesp 

(1982) beach state. The Wright and Short (1984) classification has served as the foundational 

work for nearshore bar studies and bar classifications schemes, as it was one of the first to 

offer a holistic view of the relationship between the dune, beach, and bar characteristics 

(Lippmann and Holman, 1990; Ribas et al., 2010).   

In later years, researchers expanded on the linkages between beach-dune dynamics 

and nearshore dynamics (Davidson-Arnott and Law, 1996; Houser et al., 2008; Wijinberg 

and Kroon, 2002). Dissipative beaches have a larger fetch (defined as the distance over 

which wind acts; Davidson-Arnott and Law, 1996) that allows for greater sediment to 

potentially transport across the beach. This beach state is also characterized by well-

developed bar systems (Short and Hesp, 1982; Wijinberg and Kroon; 2002; Wright and 

Short, 1988). Dissipative beaches have a lower frequency of wave set-up (an increase in 

mean water level due to breaking waves) reaching the upper beach and backshore potentially 
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causing beach erosion and dune scarping (Hesp 1988; Houser and Ellis, 2013; Short and 

Hesp, 1982). Contrary to dissipative beaches, intermediate beaches have a more variable 

fetch due to a higher frequency of wave set-up and beach mobility. Intermediate beaches are 

also characterized by crescentic nearshore bar systems (Figure 4.1C; D).   

Reflective beaches typically have a low potential for sediment transport across the 

backshore due to the acceleration of the wind across the steep beachface followed by a rapid 

deceleration beyond the crest. At this beach state, potential transport is only possible in 

locations where the backshore is wide enough to permit the adjustment of the boundary layer 

(Houser et al, 2008; Houser and Ellis, 2013). Reflective beaches are not considered in this 

study since they often do not have bars (Hesp, 2012). 

 1.2 Nearshore bar classifications 

Nearshore bars can extend from a few meters to kilometers along the coast. Nearshore bars 

are relatively large bedforms (0.25 – 4.0 m high, 25 – 150 m wide) found in the inner 

shoreface and can be aligned slightly perpendicular to the shore (i.e., transverse, Figure 

4.1A; B) or parallel, such as crescentic (Figure 4.1C; D) and longshore (Figure 4.1E; F) 

(Greenwood and Davidson-Arnott, 1979; Davidson-Arnott, 2013; Dolan and Dean, 1985; 

Masselink et al., 2011; Wijnberg and Kroon, 2002). Water depth, swash processes, and 

nearshore currents induced by tidal range differences influence their location (Wijnberg and 

Kroon, 2002). These exist under a wide range of hydrodynamic regimes, from swell- to 

storm-dominated wave environments and from micro- to macro-tidal ranges (Wijnberg and 

Kroon, 2002). 

 Several nearshore bar classifications have been conceptualized (Greenwood and 

Davidson-Arnott, 1979; Lippmann and Holman, 1990; Wijnberg and Kroon, 2002; Wright 
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and Short, 1984). Each classification scheme uses different variables (beach state, beach 

slope, wave climate, tidal range) to differentiate bar types. These classification schemes use 

site specific spatial and physical characteristics to describe bars. One of the most used bar 

classification schemes is the ‘Australian model’ (Wright and Short, 1984). The ‘Australian 

model’ is distinctive from previous schemes (e.g., Greenwood and Davidson-Arnott, 1979; 

Shepard, 1950; Sonu, 1968) because it considers the effect of the beach state (i.e. dissipative, 

intermediate, or reflective)  on bar morphology (Grasso et al., 2009; Price et al., 2011). 

Another highly cited bar classification is the ‘Dutch model’ (Ruessink and Kroon, 1994). 

This model classifies nearshore bars in terms of the bar morphometric parameters, such as 

crest depth, height, width, and volume (Plant and Holman, 1997; Ruessink and Kroon, 

1994).  

 

Figure 4.1. The figure illustrates: A) and B) transverse bars; C) shore-attached 

crescentic bar; D) crescentic bar; E) longshore bar; F) segmented longshore bar; 

G) double bar system; H) multiple bar system. Arrows indicate the current 

circulation in the nearshore. Modified from Masselink and Hughes (2003). 
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Lippmann and Holman (1990) developed the first nearshore bar classification using a 

video monitoring system. This classification expanded the ‘Australian model’ classification 

(Wright and Short, 1984) by adding two additional beach-bar configurations and 

incorporating the ‘Dutch model’ (Ruessink and Kroon, 1994). The eight bar configurations 

are: infragravity scaled surf zone, infragravity scaled 2-D bar, non-rhythmic 3-D bar, 

offshore rhythmic bar, attached rhythmic bar, non-rhythmic attached bar, incident scaled bar 

and reflective beach with no bars (Lippmann and Holman, 1990). These eight distinct bars 

types are defined by four independent morphology and hydrodynamic criteria: 1) existence 

or absence of a bar; 2) dominant bar scaling (incident vs. infragravity); 3) longshore 

variability (linear, rhythmic or non-rhythmic); and 4) trough (continuous or discontinuous). 

The authors note that these criteria are related to processes thought to be important in 

controlling nearshore morphology, particularly bar scaling and longshore variability 

(Lippmann and Holman, 1990). This classification provides a first-order approximation of 

offshore (accretional) and onshore (erosional) bar migration sequences that can be applied to 

different environments (Lippmann and Holman, 1990). While Wright and Short (1984) were 

the first to utilize a holistic approach, Lippman and Holman (1990) were the first to apply 

remotely sensed techniques on the nearshore environment. This has made Lippman and 

Holman (1990) the baseline for contemporary bar classification and identification studies 

(c.f., Gallangher et al., 1998; Masselink and Short, 1993; Ranasinghe et al., 2004).  

1.3 High-energy events and coastal system changes 

Coastal system changes occur at a wide range of spatial and temporal scales (Houser et al., 2008; 

List et al., 2006; Morton et al., 1994). High-energy events can be generated by tropical or 

extratropical systems, and winter storms. It is important to clarify that, in our current study, high-

energy wave events are weather systems that cause elevated wave heights (e.g., tropical storms, 
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mid-latitude cyclones, or winter storms). In response to single storm events, the expected beach 

response is a transition from a berm or fair-weather profile to a steep storm profile (Davidson-

Arnott, 2010; Komar, 1998; List et al., 2006). Studies have documented significant longshore 

variations in shoreline change in response to a single high-energy event (i.e., a storm) (Houser et 

al., 2008; List and Farris, 2009; Sallenger et al., 2003; Stockdon et al., 2002). It has been 

observed that there is a non-uniform shoreline response to storms, in which portions of the coast 

have significant erosion alternating with sections of coast that were almost entirely unaffected 

(Aleman et al., 2017; Houser and Hamilton, 2009; List and Farris, 2009; List et al., 2006; 

Stockdon et al., 2002). 

 Early studies attributed the variability of beach erosion and recovery rates after high-

energy wave events to longshore differences in crescentic bar morphology or small gaps in 

parallel bars (Sonu, 1973; Zeigler et al., 1959). Some studies focused on the effects of tropical 

cyclones on the coastal system (Houser and Hamilton, 2009; List et al., 2006). These studies 

looked at the effects of a single storm on the system as well as the cumulative effects of multiple 

storms (Aleman et al., 2017; Houser and Greenwood, 2007; Houser et al., 2008; Houser and 

Hamilton, 2009).  Other studies considered the effects of winter storms on the beach, dune, and 

nearshore bar systems (Houser and Greenwood, 2001). These studies examine the effects of 

multiple winter storms in the coastal spanning decades (Aleman et al., 2017; Houser and 

Greenwood, 2001). Beach recovery cycles may be connected to the migration of what was then 

referred to as ‘rhythmic shoals’ (Sonu, 1973). As bars continue to migrate onshore, they may 

eventually weld to the shore resulting in beach accretion (Aagaard et al., 2005; Aleman et al., 

2017; Houser and Hamilton, 2009; Davidson-Arnott, 2010). Bar welding can occur in areas 

where bars continue to exist (multiple bar systems) in the nearshore and does not only occur at 

sites where bars were only generated during a storm event (Aagaard et al., 2005). Nearshore bars 

have a controlling influence on the beach-dune response to storms (List et al., 2006; Ziegler et 
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al., 1959). Portions of the coastal system that exhibit high erosion rates had no bars in the 

nearshore prior to the storm, allowing more wave energy to penetrate closer to the shore (Aleman 

et al., 2017; List et al., 2006; van de Lageweg et al., 2013; Ziegler et al., 1959). In contrast, parts 

of the coastal system with one or more nearshore bars present have significantly lower erosion 

rates since the bars dissipate offshore wave energy (List et al., 2006; Ziegler et al., 1959).  

Here we investigate how bar morphology influences beach-dune response to high-energy 

wave events by analyzing pre- and post-event multispectral imagery and assessing changes to the 

beach, dune, and bar systems.  High-energy wave events can be produced from tropical cyclones 

or winter storms. Proximity of the bar to the wet/dry line can be used to examine beach-dune 

response. Response, in this case, is defined as the post-event rebuilding process where there 

is an onshore return of sediment to the subaerial beach during non-storm conditions (Jensen 

et al., 2009; Morton and Sallenger, 2003; Phillips et al., 2017).  

 

1.4 Study Area 

Three coastal systems are observed to assess the influences of nearshore bars on beach-dune 

responses to high-energy wave event conditions (Figure 4.2). The study site characteristics 

and dynamics are summarized in Table 4.1 using data from existing infrastructure 

(meteorological stations and buoys). These meteorological stations and buoys record wave 

data every 20-minutes (height, period, and direction) and wind data (speed and direction) 

every 8-minutes at the buoys and 2-minutes for the land-based stations. Wind data are 

obtained for all study sites to characterize the climatology of the location. The selected sites 

are: 

A) Duck, North Carolina, USA (intermediate beach state): This site has a rhythmic 

single bar system that varies from a longshore to a crescentic bar depending on wave 
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conditions. The study area at Duck covers 1 km of the coast, including a well-

developed and vegetated dune system. This coast faces east to the Atlantic Ocean and 

has a bimodal wind pattern receiving the strongest winds from the SSW during the 

hurricane season (June-November) and from the NNE during the winter season 

(December-March). April to May winds are from the west. Year-round wind speed 

averages 5 m/s based on three years of data (2014-2016) (Figure 4.2A; A’). 

 

B) Cassino Beach, Rio Grande do Sul, BRA (dissipative beach state): This Brazilian 

beach is characterized by coastal dynamics similar to those found on the west coast 

of the United States with 1-2 bars typically present. This beach also has a well-

developed dune system. Cassino Beach and Bay St. Louis are both dissipative 

beaches, but their wave climate conditions are substantially different with Cassino 

experiencing larger waves (see Table 4.1). This coast is oriented SSE, facing the 

South Atlantic Ocean, with a multidirectional wind pattern that receives the fastest 

velocity winds during the winter season (June-September). There is a peak of wind 

coming from the southwest during the winter, mainly during the month of June, 

when this area experiences a high incidence of severe storms (Melo et al., 2016).  

Lower velocity wind speeds are observed between October and May. Year-round 

wind speed averages 8 m/s based on three years of data (2015-2017) (Figure 4.2B; 

B’). 

 

C) Bay St. Louis, Mississippi, USA (dissipative beach state): A well-developed bar 

system is located at Bay St. Louis, Mississippi. This study area covers 0.87 km of the 

coast. The shoreline is oriented SSE facing the Gulf of Mexico. The wind pattern is 
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bimodal, which is most likely related to the sea breeze dynamics from the region (at 

night the wind comes from the land (N-NE), during the day from the ocean (S-SE). 

Year-round wind speed averages 7 m/s based on three years of data (2015-2017) 

(Figure 4.2C; C’). During this time. the strongest winds were recorded from SSE and 

were linked to the hurricane season between June and November.  

 

 

Table 4.1. Study site characteristics. Reflective beaches were not considered for this 

study since they are often considered barless (Hesp, 2012; Short and Hesp, 1982; 

Wright and Short, 1982). 
Location Tidal 

regime 

Wave 

height 

range 

Wave 

period 

range 

Meteorological 

station / buoy 

Meteorological 

station / buoy 

distance from 

site 

Duck, NC 0.7-1.5 m 0.5-2.0 m  8-10 s 44056† / ORIN7∞ 11.03 km / 

37.52 km 

Cassino Beach, 

RS 

0.5-1.0 m  1.0-1.5 m 6-12 s 31053* / n/a 88.03 km / n/a 

Bay St. Louis, 

MS  

0.1-0.7 m 0.3-1.0 m 0.5-3 s WYCM6‡ / 

42067** 

0.28 km / 

71.86 km 
 

†Buoy operated and maintained by U.S. Army Corps of Engineers and downloaded from 

the NOAA National Buoy Data Center (NDBC) website. 
∞Meteorological station owned and maintained by NOAA’s National Ocean Service, data 

downloaded from the NOAA NDBC website.  
*Buoy owned and maintained by the Brazilian Navy Hydrographic Center, data provided by 

Dr. Lauro Calliari, from the Federal University of Rio Grande, Brazil. 
‡Meteorological station owned and maintained by NOAA’s National Ocean Service, data 

downloaded from the NOAA NDBC website.  
**Buoy operated and maintained by the University of Southern Mississippi, data downloaded 

from the NOAA National Buoy Data (NDBC) website. 
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Figure 4.2. The three study sites: A) Duck, NC, A’) wind data obtained from 

NDBC buoy ORIN7 located 35.47 km SSE to show conditions at the Duck site; 

B) Cassino Beach, RS, B’) wind data obtained from Brazilian Navy Hydrographic 

Center buoy 31053 located 88.03 km directly east of the Cassino Beach site; C) 

Bay St. Louis, MS, C’) wind data obtained from NDBC meteorological station 

WYCM6 located 0.28 km north of the Bay St. Louis study site. The inset map in 

the lower left of A, B, and C shows the geographic locations of the three sites.  

 

2 Methodology 

2.1 High-Energy Wave Event Identification 

To understand the system-wide response to high energy wave events, we used wave data to 

determine ‘non-event’ and ‘event’ (i.e., tropical cyclones or winter storms) conditions at each 

study site. As observed in previous studies (Aleman et al., 2017; Houser and Greenwood, 



www.manaraa.com

71 
 

2007; Houser et al., 2008; Houser and Hamilton, 2009), we anticipated geomorphic changes to 

the beach-dune-bar systems after an event or events. Wave data were acquired from the closest 

buoy to each study site (Table 4.1). We obtained approximately one calendar year (Duck, 

NC: January to September 2014; Cassino Beach, RS: January to December 2017; Bay St. 

Louis, MS: January to September 2017) of buoy data (Table 4.2) that aligned with the 

multispectral image acquisition year. These data were quality controlled to remove all empty 

or erroneous points. Empty or erroneous points occur when the sensors do not record data for 

a particular time or when the sensor records values of “99” or “999” instead of a realistic 

measurement. The wave climate data for the site at Duck, NC and Bay St. Louis, MS were 

obtained from the National Data Buoy Center (NDBC) website (www.ndbc.noaa.gov), while 

the data for Cassino Beach were provided by Dr. Lauro Calliari from the Federal University 

of Rio Grande, Brazil. 

  High energy wave events were identified using a threshold based on significant wave 

height (Hs), which is the mean wave height of the highest one-third of waves observed 

during a particular time period. The significant wave height at each site (Hs-site) was 

calculated using approximately one calendar year of wave data (Table 4.2) from the buoy. 

This study defined high energy wave events as periods of at least 6 hours when wave heights 

consistently exceed Hs-site (c.f., Dolan and Davis, 1992; 1994; Hill et al., 2004; Rangel-

Buitrago and Anfuso, 2011; Splinter et al., 2014). The event was defined as the duration 

from the first time (start) the buoy registered wave heights exceeding the calculated Hs-site to 

the last successive time before Hs-site fell below the threshold (end) (Castelle et al., 2015; 

2017; Splinter et al., 2014).  

 After the events that exceeded the threshold were identified, the buoy data were 

corroborated with data from the National Weather Service (NWS) or the Instituto Nacional 

http://www.ndbc.noaa.gov/
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de Meteorologia where we obtained the characteristics of the event-associated weather 

systems. Some weather systems may produce multiple high energy wave events, that is, 

multiple periods of time where Hs-site was exceeded for longer than 6 hours. The NWS and 

Instituto de Nacional Meteorologia data were consulted only to obtain weather system 

characteristics; the high energy events were solely identified using the wave height data 

obtained from the buoys. The selected events and the associated wave characteristics are 

presented in Table 4.2 and discussed below.  

 

Table 4.2 Selected weather systems and corresponding wave characteristics during the 

high-energy wave events, where H is mean wave height, Hs-event is the significant wave 

height during the event, and Hmax and Hmin are maximum and minimum wave heights, 

respectively, recorded during the events. High energy events produced by the same 

weather system were merged to create this table. 
Location Weather System Characteristics Weather System Wave Characteristics 

Dates Event 

duration 

(hours) 

H (m) Hs-event (m) Hmax 

(m) 

Hmin (m) 

Duck, 

NC 

01/22-23/2014 29 2.70 3.76 3.82 1.91 

 01/27-29/2014 40 2.37 2.60 2.77 1.94 

 02/04-05/2014 9 1.99 2.06 2.07 1.93 

 02/12-22/2014 28 2.18 2.80 3.05 1.61 

Cassino 

Beach, 

RS 

05/18-22/2017 101 4.61 5.46 6.70 3.28 

Bay St. 

Louis, 

MS 

06/20-23/2017 27 2.60 3.11 3.39 1.37 

 

The 2014 Winter Storm season was an active one for the Duck, NC; four significant 

systems affected this region between the selected dates. The first winter storm was a fast-
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moving disruptive blizzard that moved through the Northeast generating significant surge 

along the eastern seaboard (NWS, 2014). The system was at its peak on January 22nd with 

the lowest atmospheric pressure of 962 mb, but wave heights in the area did not exceed the 

Hs-site threshold of 1.88 m Duck, NC until January 23rd. The second storm was a low-pressure 

system that formed near the western Gulf of Mexico on January 27th and eventually moved 

eastward (NWS, 2014). Coastal regions along the southeast including the Outer Banks 

received significant amounts of snow and ice, which led to closings of roads and bridges 

across the region.  On February 4th Duck, NC experienced on and off wave heights higher 

that the Hs-site threshold of 1.88 m associated to a cold front of the northeast coast that 

affected the area until February 6. Only one high-energy wave was identified for this weather 

system as the threshold was exceeded for 9 hours on 2/04/2014 (between 4:00AM and 

1:00PM). The Hs-site was exceeded twice more during the weather system but not for more 

than 6 hours (on 02/04/2014 for an hour at 7:00PM and on 02/06/2014 for 2 hours between 

12:00-1:00PM). Lastly, a significant winter storm affected the region between February 12 to 

the 24th, which brought a lot of ice to the Carolinas. North Carolina snow totals ranged 

between 6-12 inches in some areas, along with accumulating ice (NWS, 2014). This weather 

system produced two periods where significant wave heights exceeded the Hs-site threshold 

and lasted for more than 6 hours. There was a period of 7 hours of sustained Hs-site > 1.88 m 

on 02/12/2014 between 9:00AM and 3:00PM, and a period of 21 hours on 02/13/2014 

between 2:00AM and 10:00PM. A wave height reading that exceeded the Hs-site threshold 

was recorded on 02/22/2014 but it was not included in the analysis because it was only for 1 

hour (at 4:00AM).  
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At Cassino Beach, we considered a storm that occurred between May 17th thru the 

29rd that produced wave heights exceeding the Hs-site threshold for this site for a continuous 

101 hours. According to local meteorological stations, more than 300 mm of rain fell in the 

region in 24 hours on May 28th (Instituto Nacional de Meteorologia, 2017). In Rio Grande do 

Sul, 48 municipalities reported damages due to large hail and fast winds (Instituto Nacional 

de Meteorologia, 2017). There were other instances, in the available dataset, where the Hs-site 

was exceeded, but the temporal duration did not exceed 6 hours, therefore they were not 

classified as high energy wave events. 

Lastly, at Bay St. Louis, we analyzed Tropical Storm Cindy that affected the study 

area June 20-23, 2017. According to the National Hurricane Center 

(https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201706), Tropical Storm Cindy formed 

from an area of low pressure near the Yucatán Peninsula. It moved northward strengthening 

to tropical storm when it reached the Gulf of Mexico on June 20, 2017 south of Louisiana. 

At its maximum strength, Tropical Storm Cindy had winds of 27 m/s. Tropical Storm Cindy 

weakened before making landfall near the Louisiana/Texas border on June 22, 2017, 

approximately 445 km west of Bay St. Louis.  

Once the high-energy wave events were identified, the corresponding pre- and post-

event satellite images (WorldView series, Digital Globe) were acquired for each study site 

(Table 4.3).  We targeted imagery that could capture the site conditions closest to the start 

(pre-event) and end (post-event) of the weather system, and that has relatively clear water 

and that was collected during periods of low wave energy; the last two points are required for 

successful execution of the image classification methods (see Section 2.2 and Chapter 3).  

The imagery was used to obtain nearshore bar system and beach-dune parameters. 

https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201706
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Specifically, the bar characteristics that we measured were bar length, width, count, distance 

from the bar edge to the wet/dry line, and morphology following the Lippmann and Holman 

(1990) classification. The beach-dune parameters we measured were beach and dune width. 

These parameters were calculated to compare conditions at each location before and after the 

storm event.  

 

 Table 4.3 Multispectral imagery metadata 

Location Image Acquisition Date Source Resolution 

Pre-

event(s) 

Post-

event(s) 

Spectral Spatial 

Duck, NC 01/15/2014 03/09/2014 World-View 2 4 bands 50 cm 

Cassino 

Beach, RS 

05/12/2017 07/16/2017 World-View 3 4 bands 30 cm 

Bay St. Louis, 

MS 

06/13/2017 06/27/2017 World-View 2 4 bands 50 cm 

 

2.2 Rule-Based Image Classification 

To identify the beach-dune and nearshore bar parameters, a rule-based image classification 

was completed at each site. Imagery with increased spatial resolution favors the object-based 

classification methods (OBIA) over per-pixel classification analyses because it allows the 

analyst to look at an object composed of more than one pixel (Blaschke, 2010; Heumann, 

2011). In OBIA, an object is composed of a group of pixels and is first segmented into 

representative shapes and sizes. The resulting objects represent meaningful features in the 

image that allow the analyst to classify objects based on texture, context, and geometry 

(Blaschke, 2010; Blaschke and Strobl, 2001). Further, in a rule-base classification, similar 

objects are grouped into classes (Bouziani et al., 2010; Tarabalka and Tilton, 2012). Each 
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generated class contains one or more decision rules based on the users’ knowledge of the 

feature being classified. These rules may contain one or more attributes, such as spectral, 

spatial, or texture with user-defined ranges of values.  

The classification process in this study was completed using the Feature Extraction 

Module (ENVI Fx) for ENVI 5.5.1 following the steps described in Chapter 3. After the 

attributes for each feature (dune, beach, and nearshore bars) were computed, the features 

were extracted using a similar rule-based classification method, but applied exclusively to 

the dunes and beach (Delgado-Fernandez et al., 2009; Hugenholtz et al., 2012; Ryu and 

Sherman, 2014). The rules applied to identify the features were based on the spectral values 

of the features for each image (Table 4.4). 

Table 4.4 Spectral values used for rule-based classification method. The green band was 

used to segment the images and acquire pixel values 
Location Date  Feature Pixel Values 

 

 

 

Duck, NC 

Pre-events 

 

Dune 68.100-70.00 

Beach 205.00-214.00 

Bars 175.61-247.50 

Post-events Dune 68.15-70.16 

Beach 204.36-215.00 

Bars No bar identified 

 

 

Cassino 

Beach, RS 

Pre-event  Dune 73.39-90.60 

Beach 100.60-115.79 

Bars 117.37-155.85 

Post-event Dune 74.40-92.00 

Beach 109.69-116.30 

Bars No bar identified 

 

Bay St. 

Louis, MS 

Pre-event Dune 68.18-70.19 

Beach 205.26-215.01 

Bars 121.93-164.27 

Post-event Dune 68.10-70.01 

Beach 205.01-216.01 

Bars 120.66-164.26 
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 After the imagery is processed, the results showing the post-event changes to the beach-

dune system were compared to the nearshore bar morphodynamics to determine the coastal 

system response. Proximity of the bar to the wet/dry line was the parameter evaluated to 

identify specific characteristics of the nearshore in relation to the response stages of the dune 

and beach at each site. 

3 Results  

3.1 Duck, NC 

This study site is located within the US Army Corps of Engineers (USACE) Field Research 

Facility and there are little to no anthropogenic influences affecting this coastal area. The 

pre-events image on 01/15/2014 presented a discontinuous longshore single bar that 

extended along the 1 km study area. The bars had an average width of 3.6 m and were 

located at an average distance of 133.4 m from the wet/dry line. The beach had an area of 

0.02 km2 and foredune system 1 was located at an average distance of 30.3 m from the 

wet/dry line. Two hotspots of erosion (shown in Figure 4.3A as red arrows) are aligned with 

gaps on the discontinuous bar. The post-events image analyzed was from 03/09/2014, 53 

days after the pre-events imagery. There was no other image available at an earlier date that 

fulfilled the criteria for the study. Four winter storms affected the region between the 

acquisition of the two images (January 22-23, January 27-29, February 4-5, February 12-24; 

Table 4.2). The analysis is not capturing the immediate response of the coastal system to the 

weather systems and therefore it is possible that our results are influenced by the early stages 

of recovery since the post-events image was captured 16 days following the last high energy 

wave event.  
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Comparing the two images, the beach area remained at 0.02 km2. Foredune system #1 

showed reduction of 2.2 m (0.3%). The post-events duneline presented two new hotspots of 

erosion (Figure 4.3B with the solid red arrows), which aligned with the gaps identified in the 

discontinuous bar (Figure 4.3A, yellow arrows). A second receding gap to the left of the pier 

can be identified following the storms (in Figure 4.3B) 2 m to the west of the one previously 

identified (Figure 4.3A). The beach width varied approximately 16.4 m between the pre- and 

post-events conditions, based on measurements obtained from 10 transects along the study 

site that extended from the duneline to the wet/dry line. 

 

Figure 4.3 Results of the pre- (A) and post-events (B) imagery analysis for Duck, NC. 

(A) The yellow arrows show the gaps in the discontinuous nearshore bar. The dashed red 

arrows show the areas of dune erosion. (B) No bar was identified post-events; dashed red 

arrows show the same location as the previous image, solid red arrows show new 

‘hotspot’ areas of erosion following the high-energy wave events. Image (B) is at a slight 

angle due to an imagery offset. 
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3.2 Cassino Beach, RS 

Cassino Beach has a well-developed dune system. The 1 km study area is demarcated by two 

mud banks. This area is mainly affected by storms associated with winter weather. This site 

has western, center, and eastern portions, which are delineated by beach access points. A 

single longshore bar system was identified at this site in the pre-event image on May 12, 

2017. On this date, the bar measured 455.8 m in length, with an average width of 25.6 m. 

The beach area was 0.07 km2, with the width (or distance from the dune to the wet/dry line) 

varying from 111.9 m on the west end (foredune #1), 77.9 m in the center (foredune #2) and 

79.9 m on the eastern portion (foredune 3) of the beach (Figure 4.3A). The dunes are well-

developed with three clusters that are separated by the beach access points. Foredune #1 on 

the west end extends 488.8 m and has an area of 0.13 km2. Foredune #2 in the center portion 

of the study area has a length of 446.1 m and an area of 0.12 km2. Lastly, the easternmost 

portion of the foredune has a length of 335.8 m and an area of 0.08 km2.  

 The post-event image was obtained on 07/16/17, 57 days after maximum wave 

height. There are no wave records available for the buoy between 6 June and 9 September 

2017. Instead, the available wave record shows another event between May 28-30 that 

generated wave heights higher than the Hs-site threshold, but the wave heights that exceed the 

threshold are not sustained for a period of more than 6 hours and therefore was not classified 

as a high-energy wave event. No nearshore bar was identified for the study site in the post-

event image. The beach width and dune systems remained relatively stable. The beach area 

decreased to 0.06 km2 (14.3% difference), with the beach width in front of the western 

(foredune #1) and eastern (foredune #3) portion eroding to average widths of 85.3 m and 

65.4 m, respectively. The center portion of the beach showed a widening of 82.7 m. The 
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length of the foredunes varied between 0.1% (foredune #1) and 0.2% (foredune #2) (Figure 

4.3B, Table 4.4), with the central foredune expanding 12.8 m (2.9%). The foredune areas 

were also largely maintained; the maximum change was at the central foredune (+8.3%).  

 

Figure 4.4 Results of the pre- (A) and post-events (B) imagery analysis for Cassino 

Beach, BRA. (A) Pre-event conditions, (B) post-event conditions, no bar was identified 

in the post-event image. Hatched yellow arrows show the location of the identified bar. 

 

3.3 Bay St. Louis, MS 

The study area at Bay St. Louis underwent a flood and a coastal storm damage reduction 

project in 2015. This project included the construction of a concrete seawall structure 

dividing the beach from the main road, the completion of a small beach nourishment project, 

and the emplacement of 30 dune-like structures. The impetus for this project was to 

revitalize the area 10 years after Hurricane Katrina. 
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 A well-developed multiple bar system was identified at Bay St. Louis before Tropical 

Storm Cindy on 09/13/17. A combination of longshore (located in the outer bars, those 

located further from the shoreline) and crescentic bars (located in the inner bars, those 

located closer to the shoreline) were identified. The bar system was better developed on the 

western portion of the site with eight longshore bars that had an average length of 0.8 m and 

an average width of 0.5 m. The eastern portion of the bar contained six bars that extended the 

length of the study site. The crescentic bars were identified close to the shoreline (15.0 m) 

and had an approximate width of 7.0 m. The beach had an area of 0.06 km2, but the width 

varied alongshore. The western portion of the beach, where most of the bars where 

identified, was the narrowest part (59.4 m). The center and eastern portion of the beach were 

the widest locations with measurements of 84.8 m and 88.3 m, respectively (Figure 4.5A). 

Thirty dune-like structures, which are considered one dune system, were identified with a 

pre-event average length of 32.9 m.   

The post-event image was acquired on 9/27/17, 6 days after peak wave height. The 

bar system remained unchanged with 8 bars identified on the western portion of the study 

site, while four bars longshore bars were identified in the eastern portion of the study area. 

Crescentic bars were also found in the inner portion of the nearshore bar system, similar to 

the pre-event conditions. Bar width varied only a few centimeters (see Table 4.4). The beach 

area changed 16.7% with the area increasing to 0.07 km2. As shown in Figure 4.5B, distance 

of the dune to the wet/dry line varied slightly with the eastern corner (foredune #1) accreting 

0.3 m (0.5%), the center portion (foredune #2) accreting 0.4 m (0.5%), and the western 

corner (foredune #3) of the study site eroding 13.0 m (-16.2%). The dune-like features were 
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all accounted for in the post-event image and remained unchanged, from a length and area 

perspective. 

 

Figure 4.5 Results of the pre- (A) and post-event (B) imagery analysis for Bay St. Louis, 

MS. (A) Pre-event conditions, while (B) shows post-event conditions. This site has a 

multiple bar system comprising longshore bars in the outer portion (farthest from the 

shore; offshore of orange hatched line) and crescentic bars in the inner portion (closer to 

the shore; onshore of yellow hatched line). 

 

4          Discussion 

Nearshore bars are intrinsically linked to the beach-dune system. Not only does sand cycle 

from the nearshore to the beach and from the beach to the dune system, but also it protects 

the beach-dune system from high energy events such as storms. This study looked at three 
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distinct locations to assess how nearshore bar morphology influences beach-dune 

characteristics during high-energy wave events and how these relationships vary 

geographically. Results showed that in all instances the portions of the beach located directly 

onshore to longshore bars (Duck, NC and Cassino Beach, RS) or crescentic bars (Bays St. 

Louis, MS inner bar system) were protected from the high-energy wave events (Table 4.5). 

Unfortunately, a true comparison between sites was not possible since some study areas 

experienced a different number of high-energy wave events than others. Duck, NC 

experienced four weather systems, with 5 high-energy wave events, Cassino Beach, RS 

experienced one event, but a portion of the record is missing so we cannot rule-out the 

possibility of other high-energy wave events affecting the area between the pre- and post-

event imagery, while Bay St. Louis, MS also experienced one high-energy wave event. 

Nevertheless, it is still possible to examine the response of the coastal systems to these 

events and conceptualize how nearshore bars can or cannot protect these systems from 

potential erosion caused by high-energy wave events. 

Using the rule-based classification approach from Chapter 3, we identified key 

features in the coastal system such as the bar morphology and characteristics, duneline 

location and extent, and beach width (or distance from the wet/dry line). These results were 

analyzed to understand how the nearshore bars influence dune-beach responses after 

experiencing one or more high-energy wave events. Results also demonstrated that the bar 

morphology influences how the dune and beach responds to high-energy wave events. Figure 

4.6 presents a modification of Masselink and Hughes (2003) to illustrate the observed 

relationship between bar morphology and the dune and beach system. 
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Table 4.5 Characteristics of bars at the three study sites extracted from the rule-

based classification.  

The diagram shows the spatial relationship between dune erosion hotspots areas 

where there is no bar or a weak spot in the bar morphology (Figure 4.6). Continuous 

  Duck NC 

Percent 

Change 

BSL, MS 

Percent 

Change 

Cassino 

Beach, RS 

Percent 

Change BARS 

Pre- 

Events 

Post-

Events 

Pre-

Event 

Post-

Event 

Pre-

Event 

Post-

Event 

Bar System 1          

Width (m) 3.6 n/a  0.5 0.4 -20.0% 25.6 n/a  
Distance from 

wet/dry line (m) 133.4 n/a  7.0 6.0 -14.3% 33.7 n/a  

Length (m) 103.5 n/a  0.8 0.9 12.5% 455.8 n/a  

Bar System 2  n/a      n/a   

Width (m)    7.0 7.5 7.1%    
Distance from 

wet/dry line (m)    15.0 14.7 -2.0%    

Length (m)    1.0 0.9 -10.0%    

          

BEACH          

Area (km2) 0.02 0.02 0% 0.06 0.07 16.7% 0.07 0.06 -14.3% 

          

DUNES          
Foredune 

System 1          

Average length 

(m) 355.7 355.7 0.0% 32.9 32.9 0.0% 488.9 489.4 0.1% 

Area (km2) 872.3 870.1 -0.3% 252.0 250.0 -0.8% 0.13 0.13 0.0% 

Distance to 

wet/dry line (m) 30.3 29.6 -2.3% 59.4 59.7 0.5% 111.9 85.3 -23.8% 

          

Foredune 

System 2          

Average length 

(m) n/a n/a n/a n/a n/a n/a 446.1 458.9 2.9% 

Area (km2) n/a n/a n/a n/a n/a n/a 0.12 0.13 8.3% 

Distance to 

wet/dry line (m) 29.9 10.9 -63.5% 84.8 85.2 0.5% 77.9 82.7 6.2% 

          

Foredune 

System 3          

Average length 

(m) n/a n/a n/a n/a n/a n/a 335.8 335.2 -0.2% 

Area (km2) n/a n/a n/a n/a n/a n/a 0.08 0.07 -12.5% 

Distance to 

wet/dry line (m) 42.2 26.4 -37.4% 88.3 74.0 -16.2% 79.9 65.4 -18.1% 
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longshore bars (Figure 4.6A) provide the most protection by attenuating waves, since they 

tend to migrate offshore during storm conditions (Houser and Greenwood, 2007; Houser and 

Hamilton, 2009). Wave energy is attenuated as the waves shoal (or ‘feel bottom’) when 

approaching the shallower depths of the nearshore bars.  

This dynamic was best observed at Cassino Beach, RS where in the pre-event image 

there was a single continuous longshore bar system that protected the beach and dune 

system. The beach was widest and presented the least amount of change in the locations 

directly onshore of the continuous longshore bar system (Table 4.5). From an area 

perspective, the westernmost foredune (foredune system 1) remained unchanged, the center 

foredune area (foredune system 2) accreted 8.3% and the easternmost foredune area 

(foredune system 3) eroded 12.5%. The erosion observed at both the easternmost and 

westernmost foredune distance from the wet/dry line (23.8% and 18.1%, respectively) could 

have been linked to the creek that flows to the ocean in those sections moving closer to the 

dune line for the post-event imagery (Figure 4.4). These observations of foredune distance 

from the wet/dry line erosion at the easternmost and westernmost foredune (foredune 

systems 1 and 3) might have also been influenced by the tidal stages at which the pre- and 

post-event images were taken. The pre-event image was taken during low tide conditions 

while the post-event image was taken during high tide conditions. The difference in tidal 

range was 0.20 m (Table 4.5). This difference contributes to the observation of narrower 

beach during the post-event image. 

This pattern was also observed at Bay St. Louis, MS (Figure 4.5) where a 

combination of the outer bar system of continuous longshore bars and inner bar system of 

crescentic bars protected the beach and dunes at this location. The beach area accreted 
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approximately 16.7% (Table 4.5). The average length of the artificial dunes remained largely 

unchanged (<3% change) between the pre- and post-event measurements. The distance from 

the wet/dry line reveals that there was some accretion on the easternmost and center portion 

of the site, while the westernmost  portion of the site experienced the most erosion area as 

shown by the distance from the wet/dry line of the foredune system 3 (16.2% change). Tidal 

stage did not play a role in influencing the results at this location, since the pre- and post-

event images were taken at high tide and presented the same tidal elevation (Table 4.6).  

Discontinuous longshore bars (Figure 4.6B), on the other hand, still offer some 

protection to the dune-beach system by attenuating waves, but also cause erosion hotspots in 

the dune sections onshore to the gaps between the bars. This was observed at Duck, NC 

where two segments of the duneline showed that the distance from the wet/dry line increased 

2.3% and 37.4% after the high-energy wave event. These variations at this location might 

have also been influenced at this location by the tidal stages and elevation differences 

between the pre- and post-events images. The pre-events image (01/15/2014) was taken at 

low tide with a MLLW elevation of 0.00 m, while the post-events image (03/09/2014) was 

taken at high tide with a MLLW elevation of 0.76 m (Table 4.6). We have to also consider 

that, based on the available buoy data, this site experienced 5 high-energy wave events 

between the pre- and post-event imagery, which may contribute to the higher erosion 

percentages in the beach and dune area.  

Although not observed in isolation at any of the sites, we posit crescentic bars would 

have a similar effect on the dune-beach system as discontinuous bars (Figure 4.6C, D). 

Beaches where crescentic bars are present, such as Bay St. Louis, will have varying widths 

across the beach (Bruneau et al., 2009; Castelle et al., 2016). The locations where the crest of 
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the bar (convex portion of the crescentic bar) is onshore to the beach will be better protected, 

because the waves will be attenuated, while the horns of the bar (concave portion of the 

crescentic bar) are a weak point allowing waves to break closer to the shoreline creating 

beach cusps and generating rip currents that move sediment and cause hotspots of erosion at 

the dune (Bruneau et al., 2009; Castelle et al., 2016; Castelle and Coco, 2012; Dalrymple et 

al., 2011;Figure 4.6C, D).  

 

 Figure 4.6 Panels A, B, C, and D show how bars attenuate waves and the impact 

to the beach/dune system. Hatched arrows show the areas where waves are expected to be 

attenuated, solid arrows show the weak points where the waves reach the beach. The 

white hatched lines depict the position of the duneline in each scenario. A) Longshore 

bar; B) Discontinuous longshore bar; C) Shore-attached crescentic bar; D) Crescentic bar. 

 

The results also reveal high percentages of change for the beach area and average 

distance from the wet/dry line to the dune variables particularly at Duck, NC and Cassino 

Beach, RS (Table 4.4), which may be due to the amount of high-energy wave events that 

affected the area between the pre- and post-event imagery analysis as the system may have 

not time to recover from one event before it is affected by another. In the cases where beach 

area erosion exceeds 12%, this activity can be attributed to the position of the wet/dry line in 
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the particular image analyzed.  While there are many concerns about using the wet/dry line 

as proxy since this line fluctuates daily (in some areas twice a day) due to variations in water 

level, tidal range, and wind and wave conditions (Plant and Holman, 1997; Thieler and 

Danforth, 1994), which can be impacted by image acquisition time, it is still the most 

commonly used proxy for shoreline position (Moore, 2000; Shoshany and Degani, 1992). 

Due to the variability of the location of the wet/dry line, different researchers use different 

identification features to define the line.  

Table 4.6 Image acquisition time and tidal stage, time, and height at each study 

site. All tides are referenced to mean low low water (MLLW) levels. 

Location Date Image Acquisition 

Time 

Tidal Stage / Time/ 

Height (m) 

Duck, NC† 01/15/2014 4:12PM Low / 1:17 PM / 0.00 m 

03/09/2014 4:06PM High / 2:59 PM / 0.76 m 

Difference: 0.76 m 

Cassino Beach, 

RS* 

05/12/2017 11:30AM Low / 10:19AM / 0.10 m 

07/16/2017 11:10AM High / 7:26 AM / 0.30 m 

Difference: 0.20m 

Bay St Louis, MS‡ 06/13/2017 3:25PM High / 2:18PM / 0.61 m  

06/27/2017 3:05PM High / 2:08PM / 0.61 m 

Difference: 0.00 m 

†Data obtained from station 8651370 located in the Pier at the USACE Coastal Field 

Research Facility in Duck, NC.  
*Data obtained from the tidal gauge at Porto do Rio Grande, Brazil. 
‡Data obtained from the Bay Waveland Yacht Club station (ID: 8747437) located in Bay St. 

Louis, MS.  
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Some examples include maximum run-up during a rising tide that affects part of the 

beach that is still wet during the falling tide (Overton et al., 1999), distinct edge in image 

based on brightness between the wet and dry beach areas (the technique employed in this 

study; Hoeke et al., 2001), and land/water boundary shown by a variation in color or gray 

tone (Douglas et al., 1999). Despite the variability of the wet/dry line, techniques like the 

ones described above allow for the use of the wet/dry line as a proxy an acceptable 

representation of the shoreline (Hoeke et al., 2001; Moore, 2000; Overton et. al, 1999; Plant 

and Holman, 1997; Shoshany and Degani, 1992; Thieler and Danforth, 1994). This is 

especially true when the imagery is collected during the same season when the same wave 

and wind climate can be expected to exist at a particular study site, as well as locations, such 

as Bay St. Louis, where there is not a large tidal range impact (Gens, 2010; Leatherman, 

2003; Table 4.6).  

Bars not only attenuate the waves as they approach the beach, but they also influence 

the currents in the area, as well as the amount of sediment distributed along the shore 

(Masselink et al., 2011; Wijnberg and Kroon, 2002). This can be visualized at Bay St. Louis, 

where the beach width varied between accretion in the westernmost and center sections 

(0.5%) and erosion in the easternmost portion (-16.2%). This can be due to number of 

nearshore bars identified in each area. The easternmost portion had a smaller number of bars 

identified, which could have reduced the protection the beach and dunes received against 

high energy events, in turn producing more erosion in this area. Meanwhile, the westernmost 

and center portion of the study site, which had more identified nearshore bars, was more 

likely better protected from the high-energy wave events. If volumetric data were available, 

we would be able to trace the sand movements between the dune, beach and bars. This study 
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is also limited in investigating the volumetric changes caused by sediment distribution along 

the systems since pre- and post-events volumetric data were not available for any of the sites. 

Despite this limitation, the analysis demonstrated that nearshore bars are intrinsically 

connected to the system and that their presence and morphology influence how dunes and 

bars respond to high-energy wave events. 

Understanding the relationship between bars, beach, and dunes and how variations of 

the bar shape influence beach and dune characteristics is important for improving beach 

ecosystem services and for coastal management. By studying and analyzing nearshore bar 

morphology, coastal managers can identify hotspots of erosion at their locations investing 

more resources to protect those areas and infrastructures when a high-energy wave events 

approach. Also, as discussed previously, crescentic and discontinuous longshore bars may 

aid in the generation of rip currents (Bruneau et al., 2009; Castelle et al., 2016; Castelle and 

Coco, 2012; Dalrymple et al., 2011). The findings of this paper suggest that identifying what 

type of bar is present, as well as the corresponding beach and dune morphology, can help aid 

identify dangerous spots for swimmers and beachgoers due to topographic rip currents.  

This research, and future similar research, heavily relies on the availability of satellite 

imagery immediately following the high-energy wave events, specifically in the case of 

winter storms. For tropical cyclones agencies usually acquire imagery pre- and post-event, 

these procedures are not followed for winter storms, as well as the variability of the tidal 

range at the time the image was taken. This limitation could be minimized in future studies 

by combining satellite imagery with drone flyovers (Klemas, 2011; Seymor et al., 2018; 

Turner et al., 2016). Small Unmanned Aircraft Systems (sUAS) imagery could supplement 

the dataset and allow for improved analysis of system response to multiple events and inter-
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event comparison. These types of studies would also benefit from having more localized in 

situ weather data to better identify and characterize the high-energy wave events. The use of 

sUAS has also allowed larger spatial and temporal coverage of volumetric data collection of 

coastal environments at lower costs (Colomina and Molina, 2014; Klemas, 2015; Seymour et 

al., 2017). Adding volumetric data to similar future studies will allow researchers to 

investigate how sand is redistributed across the entire coastal system (dune, beach, and bars) 

during high energy events.   

 Based on our results, we can also determine that even though the three study sites 

have different wave climates and geomorphic characteristics, the morphology of the bar is an 

important component of the coastal system that can determine how the beach-dune system 

responds to high-energy wave events. The site at Duck, NC had a discontinuous longshore 

bar that somewhat protected the coastal system, but still produced hotspots of erosion were 

the gaps of the bars were located. Cassino Beach, RS had a continuous longshore bar and had 

better protection from high-energy wave events. Bay St. Louis presented little to no changes 

because it has a robust multiple bar system that protected the beach. Future studies should 

consider storm clusters similar to Angnuureng et al. (2017) to further understand how the 

repeated high-energy wave events influence nearshore bar behavior and beach-dune 

responses.  

5 Conclusions 

This research discusses the importance of studying coastal systems through a holistic 

approach. Applying the rule-based classification method in Chapter 3, we identified changes 

in the beach, dunes, and nearshore bars and established concrete process-based linkages to 

the coastal system holistically. Understanding how the dunes, beach, and bars’ dynamics are 
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related, and how each component affects the response of the other during storm conditions, 

will significantly improve the way that we manage, protect, and develop our coastlines.  

We defined high-energy wave events as those producing wave heights exceeding the 

site’s significant wave height (Hs-site) (Hill et al., 2004; Splinter et al., 2014) and lasting 

longer than 6 hours. Pre- and post-events images were analyzed using a rule-base 

classification according to Chapter 3. Results showed that the morphology of nearshore bars 

have a direct impact on how the beach-dune system responds to high-energy wave events 

such as tropical cyclones and winter storms. The results showed that the morphology of the 

bar can determine the response of the dune-beach complex. We suggest that future studies 

would benefit from the inclusion of drone use to streamline the process of assessing and 

monitoring coastal landscapes and focus on how storm clusters may influence nearshore bar 

behavior and beach-dune responses. Drones and sUASs are becoming more popular and 

demand have caused their price to be significantly reduced, providing a cost-effective tool 

for coastal scientists and mangers to continue their work at these sites.
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CHAPTER 5 

CONCLUSIONS 

This dissertation research focused in developing a new low-cost approach for nearshore bars 

that integrates multispectral imagery. Nearshore bar research will benefit from the larger 

spatial scale provided by satellite sensors, since we will be able to study complete systems 

instead of partial segments. Larger spatial scale and remote sensing capabilities also will 

allow scientists to study systems that previously have been considered inaccessible. A 

systems approach was utilized to study the interactions of the nearshore dynamics and the 

beach-dune system. The results garnered could improve the ability of coastal managers and 

scientists to monitor and manage coastlines. 

Chapter 2 offered a comprehensive review of the current methods available to 

remotely detect nearshore bars. This chapter investigated near-Earth and satellite imagery 

remotely based observations that have been used to study nearshore bars. It also delves into 

how several recent advances in technology and techniques allow the remote measurement of 

bar width and height, beach slope, shoreline orientation, and bar count. Finally, the chapter 

includes a discussion on how video monitoring systems are presently the most popular 

method to derive nearshore bar data, however spatial prediction models using satellite 

imagery can also provide reliable bar morphodynamic information. 

 Chapter 3 tests the first hypothesis of the dissertation, which is the generation and 

validation of a new approach to identify nearshore bars using multispectral imagery. A rule-

based classification approach was created to ascertain bar characteristics at a 
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dissipative (Bay St. Louis, MS and Cassino Beach, BRA) and an intermediate (Duck, North 

Carolina) beach. The identification approach was validated using results obtained from 

Argus video monitoring systems. The information derived from utilizing a rule-based 

classification to extract nearshore bar characteristics from multispectral imagery can provide 

important data of the spatio-temporal scale at which nearshore bar systems evolve. Single 

and multiple bar systems were identified and characterized at three locations. The use of this 

approach is possible thanks to advancements in satellite sensors and imagery with the 

advancements in VHR multispectral imagery. 

 Lastly, Chapter 4 delves into the second hypothesis of the dissertation, which seeks to 

understand how bar morphology influences beach-dune characteristics and how this 

relationship varies geographically. Results showed that the morphology of the bars 

(longshore bars, discontinuous longshore bars, or crescentic bars) can impact on how the 

beach-dune system responds to high-energy wave events. These results did not vary per 

location meaning that the morphology of the bar is what determines response of the dune-

beach complex. The site at Duck, NC had a discontinuous longshore bar that somewhat 

protected the coastal system, but still produced hotspots of erosion were the gaps of the bars 

were located. Cassino Beach, RS had a continuous longshore bar and had better protection 

from high-energy wave events. Bay St. Louis presented little to no changes because it has a 

robust multiple bar system that protected the beach.    

This dissertation provides important methodological and theoretical knowledge on 

nearshore bar studies. Understanding how dunes, beach and bars dynamics are related and 

how each component affects the response of the other during high-energy wave event 

conditions will substantially improve the way we manage, protect, and develop our 
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coastlines. Future research could aim to ascertain the research value of using multispectral 

imagery and UAV derived imagery, a cost effective and less invasive method of coastal 

monitoring, to study and characterize nearshore bar morphodynamics. This future study 

would look into integrating traditional remote sensing technology (multispectral imagery) 

with contemporary innovative techniques (i.e. UAV, drones) for coastal management and 

studies. Future studies should also consider investigating how repeated high-energy wave 

events, or high-energy wave event clusters, influence nearshore bar behavior and beach-dune 

responses. 

  

 

   



www.manaraa.com

96 
 

REFERENCES 

Aagaard, T., Davidson-Arnott, R., Greenwood, B., Nielsen, J., 2004. Sediment supply from 

shoreface to dunes: Linking sediment transport measurements and long-term 

morphological evolution. Geomorphology 60, 205–224. 

Aagaard, T., Kroon, A., Andersen, S., Möller Sǿrensen, R., Quartel, S., and Vinther, N., 

2005. Intertidal beach change during storm conditions; Egmong, The Netherlands. 

Marine Geology. 218, 65-80. 

Aagaard, T., Hughes, M., 2010. Breaker turbulence and sediment suspension in the surf 

zone. Mar. Geol. 271, 250-259. 

Aarninkhof, S.G.J., Caljouw, M., Stive, M.J.F., 2000. Video-based, quantitative assessment 

of intertidal beach variability. Coast. Eng. 3291–3304.  

Aarninkhof, S.G.J., Turner, I.L., Dronkers, T.D.T., Caljouw, M., Nipius, L., 2003. A video-

based technique for mapping intertidal beach bathymetry. Coast. Eng. 49, 275–289.  

Angnuureng, D. B., Almar, R., Senechal, N., Castelle, B., Addo, K. A., Marieu, V., & 

Ranasinghe, R. 2017. Shoreline resilience to individual storms and storm clusters 

on a meso-macrotidal barred beach. Geomorphology, 290, 265-276.



www.manaraa.com

97 
 

Aleman, N., Certain, R., Robin, N., Barusseau, J.P., 2017. Morphodynamics of slightly 

oblique nearshore bars and their relationship with the cycle of net offshore 

migration. Mar. Geol. 392, 41-52. 

Aleman, N., Robin, N., Certain, R., Vanroye, C., Barusseau, J.-P., Bouchette, F., 2011. 

Typology of nearshore bars in the Gulf of Lions (France) using LIDAR 

technology. J. Coast. Res. 721–725. 

Alexander, P.S., Holman, R.A., 2004. Quantification of nearshore morphology based on 

video imaging. Mar. Geol. 208, 101–111.  

Almar, R., Castelle, B., Ruessink, B.G., Sénéchal, N., Bonneton, P., Marieu, V., 2009. High-

frequency video observation of two nearby double-barred beaches under high-energy 

wave forcing. J. Coast. Res. SI56, 1706-1710. 

 Archetti, R., Zanuttigh, B., 2010. Integrated monitoring of the hydro-morphodynamics of a 

beach protected by low crested detached breakwaters. Coast. Eng. 57, 879–891.  

Armaroli, C., Ciavola, P., 2011. Dynamics of a nearshore bar system in the northern 

Adriatic: A video-based morphological classification. Geomorphology 126, 201–216.  

Armaroli, C., Ciavola, P., Caleffi, S., Gardelli, M., 2006. Morphodynamics of Nearshore 

Rythmic forms: an energy-based classification, in: Proceeding International 

Conference of Coastal Engineers 2006 San Diego , USA. San Diego, pp. 1–14. 

Bapentire, D., Almar, R., Senechal, N., Castelle, B., Appeaning, Addo, K., Marieu, V., 

Ranasinghe, R., 2017. Shoreline resilience to individual storms and storm clusters on 

a meso-macrotidal barred beach. Geomorphology 290, 265-276. 



www.manaraa.com

98 
 

Bauer, B.O., 1991. Aeolian decoupling of beach sediments. Annals Assoc. Americ. Geog. 

81, 290-303. 

Bauer, B., Greenwood, B., 1990. Modification of a linear bar-trough system by a standing 

edge wave. Mar. Geol., 177-294.  

Barbier, E.B., Koch, E.W., Silliman, B.R., Hacker, S.D., Wolanski, E., Primavera, J., 

Granek, E.F., Polasky, S., Aswani, S., Cramer, L.A., Stoms, D.M., Kennedy, C.J., 

Bael, D., Kappel, C.V. Perillo, G.M.E., Reed, D.J., 2008. Coastal ecosystem-based 

management with nonlinear ecological functions and values. Science 319, 321-323. 

Bergsma, E.W.J., Conley, D.C., Davidson, M.A., O’Hare, T.J., 2016. Video-based nearshore 

bathymetry estimation in macro-tidal environments. Mar. Geol. 374, 31–41.  

Beyer, H.A., 1992. Accurate calibration of CCD-cameras. Proc. 1992 IEEE Comput. Soc. 

Conf. Comput. Vis. Pattern Recognit. 96–101.  

Bird, E.C.F. 1993. Submerging coasts. Chichester: John Wiley. 

Birkemeier, W.A., 1985. Time scales of nearshore profile change, in: 19th International 

Conference on Coastal Engineering. ASCE, New York, pp. 1507–1521. 

Birkemeier, W.A., Mason, C., 1984. The CRAB: A unique nearshore surveying vehicle. J. 

Surv. Eng. 110, 1-7. 

Blaschke, T. 2010. Object based image analysis for remote sensing. ISPRS Journal of 

Photogrammetry and Remote Sensing. 65, 2-16. 

Blaschke, T., Hay, G.J. 2001. Object-oriented image analysis and scale-space: theory and 

mehods for modeling and evaluating multiscale landscape structure. International 



www.manaraa.com

99 
 

Archives of Photogrammetry and Remote Sensing. 34, 22-29.Boak, E., Turner, I.L., 

2005. Shoreline definition and detection: a review. J. Coast. Res. 21, 688-703.  

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Van 

der Meer, F., Van der Werff, H., Van Coillie, F., 2014. Geographic object-based 

image analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 

180–191. 

Borja, A., 2005. The European water framework directive: A challenge for nearshore, 

coastal and continental shelf research. Cont. Shelf Res. 25, 1768-1783. 

Bouziani, M., Goita, K., & He, D. C. 2010. Rule-based classification of a very high 

resolution image in an urban environment using multispectral segmentation guided 

by cartographic data. IEEE Transactions on Geoscience and Remote Sensing, 48(8), 

3198-3211. 

Bracs, M.A., Turner, I.L., Splinter, K.D., Short, A.D., Lane, C., Davidson, M.A., Goodwin, 

I.D., Pritchard, T., Cameron, D., 2016. Evaluation of Opportunistic Shoreline 

Monitoring Capability Utilizing Existing “Surfcam” Infrastructure. J. Coast. Res. 32, 

542–554.  

Brignone, M., Schiaffino, C.F., Isla, F.I., Ferrari, M., 2012. A system for beach video-

monitoring: Beachkeeper plus. Comput. Geosci. 49, 53–61.  

Carter, R.W.G., Balsillie, J.H., 1983. A note on the amount of wave energy transmitted over 

nearshore sand bars. Earth Surf. Process. Landforms 8, 213–222. 



www.manaraa.com

100 
 

Carter, R.W.G., Kitcher, K.. J., 1979. The Geomorphology of Offshore Sand Bars on the 

North Coast of Ireland, in: Proceedings of the the Royal Irish Academy: Section B, 

Geological and Chemical Science. pp. 43–61. 

Castelle, B., Marieu, V., Bujan, S., Splinter, K. D., Robinet, A., Sénéchal, N., & Ferreira, 

S. 2015. Impact of the winter 2013–2014 series of severe Western Europe storms 

on a double-barred sandy coast: Beach and dune erosion and megacusp 

embayments. Geomorphology, 238, 135-148. 

Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., Ren, J., 2015. Effective and efficient 

midlevel visual elements-oriented land-use classification using VHR remote 

sensing images. IEEE Trans. Geosci. Remote Sens. 53, 4238–4249. 

Clark, J.R. 1997. Coastal zone management for the new century. Ocean and Coastal 

Management. 37,2, 191-216. 

Coastal Zone Management Act, 16 U.S.C. § 1451, section 302 

Coco, G., Payne, G., Bryan, K.R., Rickard, D., Ramsay, D., Dolphin, T., 2005. The use of 

imaging systems to monitor shoreline dynamics, in: Proceedings of the 1st 

International Conference on Coastal Zone Management and Engineering in the 

Middle East. pp. 1–7. 

Cohn, N., Ruggiero, P., Ortiz, J., Walstra, D.J., 2014. Investigating the Role of Complex 

Sandbar Morphology on Nearshore Hydrodynamics. J. Coast. Res. 54–59.  

Davidson-Arnott, R. 2010. Introduction to coastal processes and geomorphology. Cambridge 

University Press. 



www.manaraa.com

101 
 

Davidson-Arnott, R.G.D., 2013. Nearshore bars. In: Shroder, J. (Editor in Chief), Sherman, 

D.J. (Ed), Treatise on Geomorphology. Academic Press, San Diego, CA, vol.10, 

Coastal Geomorphology, 10-148. 

Davidson-Arnott, R. G., & Law, M. N. 1996. Measurement and prediction of long-term 

sediment supply to coastal foredunes. Journal of Coastal Research, 654-663. 

Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., 

Medina, R., Kroon, A., Aarninkhof, S., 2007. The CoastView project: Developing 

video-derived Coastal State Indicators in support of coastal zone management. Coast. 

Eng. 54, 463–475. 

Dean, R.G., 1991. Equilibrium beach profiles: characteristics and applications. J. Coast. Res. 

7, 53-84. 

Dehouck, A., Martiny, N., Froudefond, J.M., Sénéchal, N., Bujan, S., 2009. New outcomes 

from spatial remote sensing during the ECROS experiment : towards validation of 

ocean color products and large-scale bathymetry mapping in a coastal zone. J. Coast. 

Res. 1756–1760. 

Dolan, T.J., Dean, R.G., 1985. Multiple Longshore Sand Bars in the Upper Chesapeake Bay. 

Estuar. Coast. Shelf Sci. 21, 727–743.  

Dorsch, W., Newland, T., Tassone, D., Tymons, S., & Walker, D. 2008. A statistical 

approach to modelling the temporal patterns of ocean storms. Journal of Coastal 

Research, 1430-1438. 



www.manaraa.com

102 
 

Dugan, J.E., Airoldi, L., Chapman, M.G., Walker, S.J., Schlacher, T., 2011. 8.02 Estuarine 

and coastal structures: environmental effects, a focus on shore and nearshore 

structures. Treatise on Estuarine and Coastal Science, 8, 17-41. 

Ehrlich, D., Guo, H.D., Molch, K., Ma, J.W., Pesaresi, M., 2009. Identifying damage caused 

by the 2008 Wenchuan earthquake from VHR remote sensing data. Int. J. Digit. 

Earth 2, 309–326. 

Elgar, S., Gallagher, E.L., Guza, R.T., 2001. Nearshore sandbar migration. J. Geophys. Res. 

106, 11623-11627.  

Elko, N., Holman, R., 2014. The past and future of nearshore processes research: Reflections 

on the Sallenger years and a new vision for the future. Shore and Beach 82, 30–31. 

Evans, O.F., 1940. The low and ball of the eastern shore of Lake Michigan. J. Geol. 48, 476-

511. 

Falqués, A., Dodd, N., Garnier, R., Ribas, F., MacHardy, L.C., Larroudé, P., Calvete, D., 

Sancho, F., 2008. Rythmic surf zone bars and morphodynamic self-organization. 

Coastal Engineering. 55, 622-641. 

French, J.R., Burningham, H., 2009. Coastal geomorphology: trends and challenges. Prog. 

Phys. Geogr. 33, 117–129.  

French, J. R., & Burningham, H. 2011. Coastal geomorphology. Progress in Physical 

Geography, 35(4), 535-545. 

French, J.R. and H. Burningham, 2013. Coasts and climate, Insights from geomorphology. 

Progress in Physical Geography 37, 4, 550-561.French, J.R., Burningham, H., 2011. 

Coastal geomorphology. Prog. Phys. Geogr. 35, 535–545.  



www.manaraa.com

103 
 

Gallagher, E.L., Elgar, S., Guza, R.T., 1998. Observations of sand bar evolution on a natural 

beach. J. Geophys. Res. 103, 3203–3215. 

Gama, C., Fortes, C.J.E.M., Baptista, P., Albardeiro, L., Pinheiro, L., Salgado, R., 2011. 

Medium-term evolution of an intermediate beach with an intertidal bar (Amoreira 

beach, Southwest Portuguese rocky coast). J. Coast. Res. SI 64, 80-84. 

Garnier, R., Medina, R., Pellón, E., Falqués, A., Turki, I., 2012. Intertidal finger bars at El 

Puntal Spit, Bay of Santander, Spain. Coastal Engineering, 1-8.  

Gens, R. 2010. Remote sensing of coastlines: detection, extraction and 

monitoring. International Journal of Remote Sensing, 31(7), 1819-1836. 

Greenwood, B., Davidson-Arnott, R.G.D., 1979. Sedimentation and equilibrium in wave-

formed bars: a review and case study. Can. J. Earth Sci. 16, 312–332. 

Greenwood, B., Richards, R.G., Brander, R.W., 1995. Acoustic imaging of sea-bed 

geometry: A High resolution remote tracking sonar (HRRTS II). Mar. Geol. 112, 

207-218. 

Guedes, R.M.C., Calliari, L.J., Holland, K.T., Plant, N.G., Pereira, P.S., Alves, F.N.A., 

2011. Short-term sandbar variability based on video imagery: Comparison between 

Time-Average and Time-Variance techniques. Mar. Geol. 289, 122–134.  

Harris, W.D., Umbach, M.J., 1972. Underwater mapping. Photogramm. Eng. 34, 765–772. 

Hesp, P., 1988. Surfzone, beach, and foredune interactions on the Australian Southeast 

coast. J. Coast. Res. 15–25. 

Hesp, P. A. 2012. Surfzone-beach-dune interactions. 35-40. 



www.manaraa.com

104 
 

Heumann, B.W. 2011. An Object-Based Classification of Mangroves Using a Hybrid 

Decision Tree - Support Vector Machine Approach. Remote Sensing. 3, 2440-2460. 

Heuvelink, G.B.M., 2005. Propagation of Error in Spatial Modeling with GIS, in: Ley, 

Goodenild, Maguire, Rhind (Eds.), Geographical Information Systems Volume 1 

Principles and Technical Issues. pp. 207–217. 

Holland, K.T., Holman, R.A., Lippmann, T.C., Stanley, J., Plant, N.G., 1997. Practical Use 

of Video Imagery in Nearshore Oceanographic Field Studies. J. Geophys. Res. 22, 

81–92.  

Holman, R.A., Haller, M.C., 2013. Remote Sensing of the Nearshore. Ann. Rev. Mar. Sci. 5, 

95–113.  

Holman, R.A., Stanley, J., 2007. The history and technical capabilities of Argus. Coast. Eng. 

54, 477–491.  

Holman, R. A, Haller, M.C., Lippmann, T.C., Holland, K.T., Jaffe, B.E., 2015. Advances in 

nearshore processes research: Four decades of progress. Shore and Beach 83, 39–52. 

Holman, R., Stanley, J., Özkan-haller, T., 2003. Applying Video Sensor Network to 

Nearshore Environment Monitoring. IEEE Pervasive Comput. 14–21. 

Houser, C., Hapke, C., & Hamilton, S. 2008. Controls on coastal dune morphology, 

shoreline erosion and barrier island response to extreme 

storms. Geomorphology, 100(3-4), 223-240. 

Houser, C., 2009. Synchronization of transport and supply in beach-dune interaction. 

Progress Phys. Geog. 33, 733-746. 



www.manaraa.com

105 
 

Houser, C., Hamilton, S., 2009. Sensitivity of post-hurricane beach and dune recovery to 

event frequency. Earth Surface Processes and Landforms 34, 613-628. 

Houser, C., Ellis, J., 2013. Beach and dune interaction. In: Shorder, J. (Editor in Chief), 

Sherman, D.J. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, 

vol. 10, Coastal Geomorphology, 267-288. 

Houser, C., Greenwood, B., 2007. Onshore Migration of a Swash Bar During a Storm. J. 

Coast. Res. 231, 1–14.  

Jahjah, M., Ulivieri, C., 2010. Automatic archaeological feature extraction from satellite 

VHR images. Acta Astronaut. 66, 1302–1310 

Jensen, J.R., 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. 

3rd Ed. Pearson, Upper Saddle River, NJ. 

Jensen, S.G., Aagaard, T., Baldock, T.E., Kroon, A., Hughes, M., 2009. Berm formation and 

dynamics on a gently sloping beach; the effect of water level and swash overtopping. 

Earth Surf. Process. Landforms 34, 1533–1546.  

King, C.A.M., Williams, W.W., 1949. The formation and movement of sand bars by wave 

action. The Geographical Journal 113, 70-85. 

Kingston, K.S., Ruessink, B.G., Van Enckevort, I.M.J., Davidson, M.A., 2000. Artificial 

neural network correction of remotely sensed sandbar location. Mar. Geol. 169, 137–

160.  

Klemas, V., 2011. Remote Sensing Techniques for Studying Coastal Ecosystems: An 

Overview. J. Coast. Res. 27, 2–17.  



www.manaraa.com

106 
 

Komar, P.D., 1998. Beach processes and sedimentation. Prentice Hall, Upper Saddle River, 

NJ. 

Konicki, K.M., Holman, R.A., 2000. The statistics and kinematics of transverse sand bars on 

an open coast, Marine Geology.  

Lafon, V., De Melo Apoluceno, D., Dupuis, H., Michel, D., Howa, H., Froidefond, J.M., 

2004. Morphodynamics of nearshore rhythmic sandbars in a mixed-energy 

environment (SW France): I. Mapping beach changes using visible satellite imagery. 

Estuar. Coast. Shelf Sci. 61, 289–299.  

Lafon, V., Froidefond, J.M., Lahet, F., Castaing, P., 2002. SPOT shallow water bathymetry 

of a moderately turbid tidal inlet based on field measurements. Remote Sens. 

Environ. 81, 136–148.  

Larson, M., Kraus, N.C., 1994. Temporal and spatial scales of beach profile change, Duck, 

North Carolina. Mar. Geol. 117, 75-94. 

Leatherman, S. P. 2003. Shoreline change mapping and management along the US East 

Coast. Journal of Coastal Research, 5-13. 

Lee, Z., Carder, K.L., Mobley, C.D., Steward, R.G., Patch, J.S., 1999. Hyperspectral remote 

sensing for shallow waters: 2. Deriving bottom depths and water properties by 

optimization. Appl. Opt. 38, 3831–43.  

Lippmann, T.C., Holman, R.A., 1989. Quantification of sand bar morphology: A video 

technique based on wave dissipation. J. Geophys. Res. Ocean. 94, 995–1011.  



www.manaraa.com

107 
 

Lippmann, T.C., Holman, R. A., 1990. The spatial and temporal variability of sand bar 

morphology. J. Geophys. Res. 95, 11575-11590.  

List, J.H., Farris, A.S., 1999. Large-scale shoreline response to storms and fair weather. 

Proceedings Coastal Sediments ’99, American Society of Civil Engineering, 

Reston, VA, 1324-1338. 

List, J.H., Farris, A.S., and Sullivan, C., 2006. Reversing storm hotspots on sandy beaches, 

Spatial and temporal characteristics. Marine Geology, 226, 261-279. 

Liu, H., Sherman, D., Gu, S., 2007. Automated extraction of shorelines from airborne light 

detection and tanging data and accuracy assessment based on Monte Carlo 

simulation. Journal of Coastal Research. 6, 1359-1369. 

López, I., Aragonés, L., Villacampa, Y., Serra, J.C., 2017. Neural network for determining 

the characteristic point of the bars. Ocean Engineering. 136, 141-151. 

 Lundahl, A.C., 1948. Underwater depth determination by aerial photography. Photogramm. 

Eng. 14, 454–462. 

Madsen, A.J., Plant, N.G., 2001. Intertidal beach slope predictions compared to field data. 

Mar. Geol. 173, 121–139.  

Masselink, G., Aagaard, T., Kroon, A, 2011. Destruction of intertidal bar morphology during 

a summer storm surge event: Example of positive morphodynamic feedback. J. 

Coast. Res. 105–109. 



www.manaraa.com

108 
 

Masselink, G., Austin, M., Scott, T., Poate, T., Russell, P., 2014. Role of wave forcing, 

storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach. 

Geomorphology 226, 76–93.  

Masselink, G., Kroon, A., Davidson-Arnott, R.G.D., 2006. Morphodynamics of intertidal 

bars in wave-dominated coastal settings - A review. Geomorphology 73, 33–49.  

Masselink, G., & Short, A. D. (1993). The effect of tide range on beach morphodynamics 

and morphology: a conceptual beach model. Journal of coastal research, 785-800. 

McNinch, J.E., 2007. Bar and swash imaging radar (BASIR): A mobile X-band radar 

designed for mapping nearshore sand bars and swash-defined shorelines over large 

distances. J. Coast. Res. 59–74. 

Mei, C.C., 1985. Resonant reflection of surface waves by periodic sand bars, J. Fluid Mech. 

152, 315-335. 

Mole, M.A., Mortlock, T.R., Turner, I.L., Goodwin, I.D., Splinter, K.D., Short, A.D., 2013. 

Capitalizing on the surfcam phenomenon: a pilot study in regional-scale shoreline 

monitoring utilizing existing camera infrastructure. J. Coast. Res. SI65, 1433–1438.  

Monteys, X., Harris, P., Caloca, S., Cahalane, C., 2015. Spatial prediction of coastal 

bathymetry based on multispectral satellite imagery and multibeam data. Remote 

Sens. 7, 13782–13806.  

Moore, L.J., 2000. Shoreline Mapping Techniques. J. Coast. Res. 16, 111–124. 



www.manaraa.com

109 
 

Moore, L.J., Sullivan, C., Aubrey, D.G., 2003. Interannual evolution of multiple longshore 

sand bars in a mesotidal environment, Truro, Massachusetts, USA. Mar. Geol. 196, 

127–143.  

Morton, R., Paine, J.G., and Gibeaut, J.C., 1994. Stages and durations of post-storm 

beach recovery, southeastern Texas coast, U.S.A. Journal of Coastal Research 

10,4, 884-908. 

Morton, R.A., Sallenger, A.H. 2003. Morphological impacts of extreme storms on sandy 

beaches and barriers. Journal of Coastal Research. 19, 560-573. 

Murray, T., Cartwright, N., Tomlinson, R., 2013, Video-imaging of transient rip currents on 

the Gold Coast open beaches. J. Coast. Res. SI65, 1809-1814. 

Nieto, M.A., Garau, B., Balle, S., Simarro, G., Zarruk, G.A., Ortiz, A., Tintoré, J., Álvarez-

Ellacuría, Gómez-Pujol, L., Orfila, A., 2010. An open source, low cost video-based 

coastal monitoring system. Earth Surf. Process. Landforms 35, 1712–1719. 

Nordstrom, K.F., Gares, P.A., 1990. Changes in the volume of coastal dunes in New Jersey, 

USA. Ocean and Shoreline Management 14, 1-10. 

Orme, A.R., 2013. The four traditions of coastal geomorphology. In, Shroder, J. (Editor in 

Chief), Sherman, D.J. (Ed.), Treatise on Geomorphology. Academic Press, San 

Diego, CA, vol. 10, Coastal Geomorphology, pp. 5-38. 

Penna, M.A., 1991. Camera calibration: A quick and easy way to determine the scale factor. 

IEEE Trans. Pattern Anal. Mach. Intell. 13, 1240–1245. 



www.manaraa.com

110 
 

Phillips, M.S., Harley, M.D., Turner, I.L. Splinter, K.D., Cox, R.J. 2017. Shoreline recovery 

on wave-dominated sandy coastlines: the role of sandbar morphodynamics and 

nearshore wave parameters. Marine Geology. 385, 146-159. 

Plant, N.G., Aarninkhof, S.G.J., Turner, I.L., Kingston, K.S., 2007. The Performance of 

Shoreline Detection Models Applied to Video Imagery. J. Coast. Res. 233, 658–670.  

Plant, N.G., Holland, K.T., Puleo, J.A., 2002. Analysis of the scale of errors in nearshore 

bathymetric data. Mar. Geol. 191, 71–86.  

Plant, N.G., Holman, R.A., 1997. Intertidal beach profile estimation using video images. 

Mar. Geol. 140, 1–24.  

Price, T.D., Rutten, J., Ruessink, B.G. 2011. Coupled behavior within a double sandbar 

system. Journal of Coastal Research. SI 64, 125-129. 

Pye, K., 1982. Morphological development of coast dunes in a humid tropical environment, 

Cape Bedford and Cape Flattery, North Queensland. Phys. Geog. 64, 213-227. 

Ranasinghe, R., Symonds, G., Black, K., and Holman, R., 2004. Morphodynamics of 

intermediate beaches, a video imaging and numerical modelling study. Coastal 

Engineering, 51. 

Rangel-Buitrago, N., & Anfuso, G. 2011. An application of Dolan and Davis (1992) 

classification to coastal storms in SW Spanish littoral. Journal of Coastal Research, 

1891-1895. 

Reyf, V., Davies, A.G., Belzons, M., 1995. On the formation of bars by the action of waves 

on an erodible bed: A laboratory study. J. Coast. Res. 11, 1180-1194. 



www.manaraa.com

111 
 

Ribas, F., Falqués, A., Garnier, R., 2017. Nearshore sand bars on western Mediterranean 

beaches. In Atlas of Bedforms in the Western Mediterranean (pp. 81-88). Springer, 

Cham. 

Ribas, F., Ojeda, E., Price, T.D., Guillén, J., 2010. Assessing the suitability of video imaging 

for studying the dynamics of nearshore sandbars in tideless beaches. IEEE Trans. 

Geosci. Remote Sens. 48, 2482–2497. 

Rihouey, D., Dugor, J., Dailloux, D., Morichon, D., 2009. Application of remote sensing 

video system to coastal defense monitoring. J. Coast. Res. SI56, 1582-1586. 

Rodríguez-Martín, R., Rodríguez-Santalla, I., 2013. Detection of Submerged Sand Bars in 

the Ebro Delta Using Aster Images, in: New Frontiers in Engineering, Geology and 

the Environment. pp. 103–106.  

Roelvink, J.A., Stive, M.J.F., 1989. Bar-generating cross-shore flow mechanisms on a beach. 

J. Geophys. Res. 94, 4785-4800. 

Román-Rivera, M.A., 2014. Spatial and Temporal Evaluation of Dune, Beach and Nearshore 

Bar Interactions Cape. Thesis. East Carolina University, Greenville, North Carolina, 

USA. 

Román-Rivera, M.A., Ellis, J.T., 2019. A synthetic review of remote sensing applications to 

detect nearshore bars. Mar. Geol. 408, 144–153. doi:10.1016/j.margeo.2018.12.003 

Ruessink, B.G., Bell, P.S., van Enckevort, I.M.J., Aarninkhof, S.G.J., 2002. Nearshore bar 

crest location quantified from time-averaged X-band radar images. Coast. Eng. 45, 

19-32. 



www.manaraa.com

112 
 

Ruessink, B. G., & Jeuken, M. C. J. L. 2002. Dunefoot dynamics along the Dutch 

coast. Earth Surface Processes and Landforms: The Journal of the British 

Geomorphological Research Group, 27(10), 1043-1056. 

Ruessink, B.G., Kroon, A. 1994. The behavior of a multiple bar system in the nearshore of 

Tereschelling, the Netherlands: 1965-1993. Marine Geology. 121 (3), 187-197. 

Rutten, J., Ruessink, B.G., Price, T.D., 2018. Observations on sandbar behavior along a 

man-made curved coast. ESPL. 43, 134-149. 

Sallenger, A.H., Howard, P.C., Fletcher III, C.H., Howd, P.A., 1983. A system for 

measuring bottom profile, waves and currents in the high-energy nearshore 

environment. Mar. Geol. 51, 63-76. 

Schiaffino, C.F., Brignone, M., Corradi, N., Cevasco, A., Iannotta, M.A., Cavallo, C., 

Ferraro, M., 2013. The Ligurian webcam network and database for coastal 

management. Coastal Erosion Monitoring, 79. 

Senechal, N., Coco, G., Castelle, B., Marieu, V., 2015. Storm impact on the seasonal 

shoreline dynamics of a meso- to macrotidal open sandy beach (Biscarrosse, France). 

Geomorphology 228, 448–461.  

Sallenger Jr., A.H., Krabill, W.B., Swift, R.N., Brock, J., List, J., Hansen, M., Holman, R.A., 

Manizade, S., Sontag, J., Meredith, A., Morgan, K., Yunkel, J.K. Frederick, E.B., 

Stockton, H., 2003. Evaluation of airborne topographic lidar for quantifying beach 

changes. Journal of Coastal Research, 19, 125-133. 

Seymor, A.C., Ridge, J.T., Rodriguez, A.B., Newton, E., Dale, J., Johnston, D.W. 2018. 



www.manaraa.com

113 
 

Deploying Fixed Wing Unoccupied Aerial Systems (UAS) for Coastal Morphology 

Assessment and Management. Journal of Coastal Research. 34(3), 704-717. 

Shepard, F.P. 1950. Longshore-bars and longshore-troughs. N0. TM-15. Corps of Engineers 

Washington DC Beach Erosion Board. 

Sheppard, C.R.C., Matheson, K., Bythell, J.C., Murphy, P., Blair Myers, C., Blake, B., 1995. 

Habitat mapping in the Caribbean for management and conservation: use and 

assessment of aerial photography. Aquat. Conserv. Mar. Freshw. Ecosyst. 5, 277–

298. 

Sherman, D.J., Bauer, B.O., 1993. Dynamics of beach-dune systems. Progress in Physical 

Geography 17, 413-447. 

Short, A.D., 1975, Multiple offshore bars and standing waves. J. Geophys. Res. 80, 3838-

3840. 

Short, A.D., Aagaard, T., 1993. Single and multi-bar beach change models. J. Coast. Res. SI 

15, 141-157. 

Short, A.D., Hesp, P.A., 1982. Wave, beach and dune interactions in southeastern Australia. 

Mar. Geol. 48, 259–284. 

Shoshany, M., Degani, A., 1992. Shoreline Detection by Digital Image Processing of Aerial 

Photography. J. Coast. Res. 8, 29–34. 

Siegel, D. A, Wang, M., Maritorena, S., Robinson, W., 2000. Atmospheric correction of 

satellite ocean color imagery: the black pixel assumption. Appl. Opt. 39, 3582–91.  



www.manaraa.com

114 
 

Simarro, G., Ribas, F., Alvarez, A., Guillen, J., Chic, O., Orfila, A., 2017. ULISES: An open 

source code for extrinsic calibrations and planview generations in coastal video 

monitoring systems. J. Coast. Res. 33, 1217-1227. 

Smith, E.R., Kraus, N., 1991. Laboratory study of wave-breaking over bars and artificial 

reefs. J. Waterway, Port, Coastal and Ocean Engineering 117, 307-325. 

Splinter, K.D., Harley, M., Turner, I., 2018. Remote Sensing is Changing Our View of the 

Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. 

Rem.Sen. 10, 1-25.  

Splinter, K.D., Holman, R.A., Plant, N.G., 2011. A behavior-oriented dynamic model for 

sandbar migration and 2DH evolution. J. Geophys. Res. Ocean. 116, 1–21.  

Splinter, k., Strauss, D., Tomlinson, R., 2011. Can we reliably estimate dune erosion without 

knowing pre-storm bathymetry?. 20th Australasian Coastal and Ocean Engineering 

Conference. 

Splinter, K. D., Carley, J. T., Golshani, A., & Tomlinson, R. 2014. A relationship to describe 

the cumulative impact of storm clusters on beach erosion. Coastal engineering, 83, 

49-55. 

Sonu, C., 1972. Field observation of nearshore circulation and meandering currents. J. 

Geophys. Res. 77, 3232-3247. 

Stephenson, W. J., & Brander, R. W. 2003. Coastal geomorphology into the twenty-first 

century. Progress in Physical Geography, 27(4), 607-623. 



www.manaraa.com

115 
 

Stockdon, H.F., Sallenger Jr., A.H., List, J.H., Holman, R.A., 2002. Estimation of shoreline 

position and change using airborne topographic lidar data. Journal of Coastal 

Research, 18, 502-513. 

Tarabalka, Y., Tilton, J.C., 2012. Improved hierarchical optimization-based classification 

of hyperspectral images using shape analysis, in: 2012 IEEE International 

Geoscience and Remote Sensing Symposium. IEEE, pp. 1409–1412. 

Tatui, F., Vespremeanu-Stroe, A., Ruessink, G.B., 2016. Alongshore variability of cross-

shore bar behavior on a nontidal beach. Earth Surf. Process. Landforms 41, 2085–

2097.  

Teodoro, A.C., 2016. Optical Satellite Remote Sensing of the Coastal Zone Environment 

-- An Overview, in: Marghany, M. (Ed.), Environmental Applications of Remote 

Sensing. InTech, pp. 165–196. doi:10.5772/60828 

Thia-Eng, C. 1993. Essential elements of integrated coastal zone management. Ocean and 

Coastal Management, 21, 81-108. 

Thieler, E.R., Danforth, W.W., 1994. Historical Shoreline Mapping ( I ): Improving 

Techniques and Reducing Positioning Errors. J. Coast. Res. 10, 549–563. 

Thornton, E., Humiston, R., Birkemeier, W., 1996. Bar-trough generation on a natural 

beach. J. Geophys. Res. 101, 12097-12110. 

Turner, I.L., Aarninkhof, S.G.J., Holman, R.A., 2006. Coastal imaging applications and 

research in Australia. J. Coast. Res. 22, 542–555.  



www.manaraa.com

116 
 

Turner, I. L., Harley, M. D., & Drummond, C. D. 2016. UAVs for coastal 

surveying. Coastal Engineering, 114, 19-24. 

van Dongeren, A., Plant, N., Cohen, A., Roelvink, D., Haller, M.C., Catalán, P., 2008. Beach 

Wizard: Nearshore bathymetry estimation through assimilation of model 

computations and remote observations. Coast. Eng. 55, 1016–1027.  

van de Lageweg, W.I., Bryan, K.R., Coco, G. Ruessink, B.G., 2013. Observations of 

shoreline-sandbar coupling on an embayed beach. Mar. Geol. 344, 101-114.  

van Enckevort, I.M.J., Ruessink, B.G., 2003. Video observations of nearshore bar behaviour. 

Part 1: Alongshore uniform variability. Cont. Shelf Res. 23, 501–512.  

van Enckevort, I.M.J., Ruessink, B.G., Coco, G., Suzuki, K., Turner, I.L., Plant, N.G., 

Holman, R.A., 2004. Observations of nearshore crescentic sandbars. J. Geophys. 

Res. C Ocean. 109, 1–17. 

Van de Lageweg, W. I., Bryan, K. R., Coco, G., & Ruessink, B. G. 2013. Observations of 

shoreline–sandbar coupling on an embayed beach. Marine Geology, 344, 101-114. 

Wang, Q., Liu, S., Chanussot, J., Li, X., 2018. Scene classification with recurrent attention 

of VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 1–13. 

Wiegel, R.L., 1947. Recognition of underwater obstructions from aerial photographs. 

University of California, Department of Engineering. 

Wijnberg, K.M., Holman, R.A., 1997. Cyclic Bar Behavior Viewed by Video Imagery, in: 

Coastal Dynamics ’97. pp. 375–384. 

Wijnberg, K.M., Kroon, A., 2002. Barred beaches. Geomorphology 48, 103–120.  



www.manaraa.com

117 
 

Wijnberg, K.M., Terwindt, J.H.J., 1995. Extracting decadal morphological behavior from 

high-resolution , long-term bathymetric surveys along the Holland coast using 

eigenfunction analysis. Mar. Geol. 126, 301–330. 

Wright, L.D., Short, A.D., 1984. Morphodynamic variability of surf zones and beaches: 

A synthesis. Mar. Geol. 56, 93–118. 

Ziegler, J.M., Hayes., C.R., Tuttle, S.D., 1959. Beach changes during stoms on outer 

Cape Cod, Massachussetts. Journal of Geology, 17, 318-336. 

 



www.manaraa.com

118 
 

APPENDIX A 

MARINE GEOLOGY MANUSCRIPT COPYRIGHT RELEASE 

 

 

Figure A.1 Screenshot of copyright clearance from Science Direct managers of the 

journal Marine Geology. 

 

 


	Innovative Approaches Using Multispectral Imagery to Detect Nearshore Bars and Elucidate Beach-Dune System Dynamics
	Recommended Citation

	tmp.1579728372.pdf.oP_nM

